69 research outputs found

    Interlayer interaction and electronic screening in multilayer graphene

    Get PDF
    The unusual transport properties of graphene are the direct consequence of a peculiar bandstructure near the Dirac point. We determine the shape of the pi bands and their characteristic splitting, and the transition from a pure 2D to quasi-2D behavior for 1 to 4 layers of graphene by angle-resolved photoemission. By exploiting the sensitivity of the pi bands to the electronic potential, we derive the layer-dependent carrier concentration, screening length and strength of interlayer interaction by comparison with tight binding calculations, yielding a comprehensive description of multilayer graphene's electronic structure

    Massive enhancement of electron-phonon coupling in doped graphene by an electronic singularity

    Get PDF
    The nature of the coupling leading to superconductivity in layered materials such as high-Tc superconductors and graphite intercalation compounds (GICs) is still unresolved. In both systems, interactions of electrons with either phonons or other electrons or both have been proposed to explain superconductivity. In the high-Tc cuprates, the presence of a Van Hove singularity (VHS) in the density of states near the Fermi level was long ago proposed to enhance the many-body couplings and therefore may play a role in superconductivity. Such a singularity can cause an anisotropic variation in the coupling strength, which may partially explain the so-called nodal-antinodal dichotomy in the cuprates. Here we show that the topology of the graphene band structure at dopings comparable to the GICs is quite similar to that of the cuprates and that the quasiparticle dynamics in graphene have a similar dichotomy. Namely, the electron-phonon coupling is highly anisotropic, diverging near a saddle point in the graphene electronic band structure. These results support the important role of the VHS in layered materials and the possible optimization of Tc by tuning the VHS with respect to the Fermi level.Comment: 8 page

    Experimental Determination of the Spectral Function of Graphene

    Full text link
    A number of interesting properties of graphene and graphite are postulated to derive from the peculiar bandstructure of graphene. This bandstructure consists of conical electron and hole pockets that meet at a single point in momentum (k) space--the Dirac crossing, at energy ED=ωDE_{D} = \hbar \omega_{D}. Direct investigations of the accuracy of this bandstructure, the validity of the quasiparticle picture, and the influence of many-body interactions on the electronic structure have not been addressed for pure graphene by experiment to date. Using angle resolved photoelectron spectroscopy (ARPES), we find that the expected conical bands are distorted by strong electron-electron, electron-phonon, and electron-plasmon coupling effects. The band velocity at EFE_{F} and the Dirac crossing energy EDE_{D} are both renormalized by these many-body interactions, in analogy with mass renormalization by electron-boson coupling in ordinary metals. These results are of importance not only for graphene but also graphite and carbon nanotubes which have similar bandstructures.Comment: pdf file, 10 pages, 4 figure

    Morphology of graphene thin film growth on SiC(0001)

    Full text link
    Epitaxial films of graphene on SiC(0001) are interesting from a basic physics as well as applications-oriented point of view. Here we study the emerging morphology of in-vacuo prepared graphene films using low energy electron microscopy (LEEM) and angle-resolved photoemission (ARPES). We obtain an identification of single and bilayer of graphene film by comparing the characteristic features in electron reflectivity spectra in LEEM to the PI-band structure as revealed by ARPES. We demonstrate that LEEM serves as a tool to accurately determine the local extent of graphene layers as well as the layer thickness

    Van Hove Singularity and Apparent Anisotropy in the Electron-Phonon Interaction in Graphene

    Full text link
    We show that the electron-phonon coupling strength obtained from the slopes of the electronic energy vs. wavevector dispersion relations, as often done in analyzing angle-resolved photoemission data, can differ substantially from the actual electron-phonon coupling strength due to the curvature of the bare electronic bands. This effect becomes particularly important when the Fermi level is close to a van Hove singularity. By performing {\it ab initio} calculations on doped graphene we demonstrate that, while the apparent strength obtained from the slopes of experimental photoemission data is highly anisotropic, the angular dependence of the actual electron-phonon coupling strength in this material is negligible.Comment: 5 pages 4 figure
    corecore