3,421 research outputs found

    A thermodynamical model for non-extremal black p-brane

    Full text link
    We show that the correct entropy, temperature (and absorption probability) of non-extremal black p-brane can be reproduced by a certain thermodynamical model when maximizing its entropy. We show that the form of the model is related to the geometrical similarity of non-extremal and near extremal black p-brane at near horizon region, and argue about the appropriateness of the model.Comment: Almost the same version as the paper appeared in Physical Review

    The Electric Double Layer Structure Around Charged Spherical Interfaces

    Full text link
    We derive a formally simple approximate analytical solution to the Poisson-Boltzmann equation for the spherical system via a geometric mapping. Its regime of applicability in the parameter space of the spherical radius and the surface potential is determined, and its superiority over the linearized solution is demonstrated.Comment: 7 pages, 5 figure

    Multi-mode storage and retrieval of microwave fields in a spin ensemble

    Get PDF
    A quantum memory at microwave frequencies, able to store the state of multiple superconducting qubits for long times, is a key element for quantum information processing. Electronic and nuclear spins are natural candidates for the storage medium as their coherence time can be well above one second. Benefiting from these long coherence times requires to apply the refocusing techniques used in magnetic resonance, a major challenge in the context of hybrid quantum circuits. Here we report the first implementation of such a scheme, using ensembles of nitrogen-vacancy (NV) centres in diamond coupled to a superconducting resonator, in a setup compatible with superconducting qubit technology. We implement the active reset of the NV spins into their ground state by optical pumping and their refocusing by Hahn echo sequences. This enables the storage of multiple microwave pulses at the picoWatt level and their retrieval after up to 35μ35 \mus, a three orders of magnitude improvement compared to previous experiments.Comment: 8 pages, 5 figures + Supplementary information (text and 6 figures

    Electron spin resonance detected by a superconducting qubit

    Full text link
    A new method for detecting the magnetic resonance of electronic spins at low temperature is demonstrated. It consists in measuring the signal emitted by the spins with a superconducting qubit that acts as a single-microwave-photon detector, resulting in an enhanced sensitivity. We implement this new type of electron-spin resonance spectroscopy using a hybrid quantum circuit in which a transmon qubit is coupled to a spin ensemble consisting of NV centers in diamond. With this setup we measure the NV center absorption spectrum at 30mK at an excitation level of \thicksim15\,\mu_{B} out of an ensemble of 10^{11} spins.Comment: 6 pages, 4 figures, submitted to PR
    corecore