77 research outputs found

    Spatially-resolved soft materials for controlled release – hybrid hydrogels combining a robust photo-activated polymer gel with an interactive supramolecular gel

    Get PDF
    Hybrid hydrogels based on self-assembling low-molecular-weight gelator (LMWG) DBS-CONHNH2 (DBS = 1,3;2,4-dibenzylidene-D-sorbitol) and crosslinked polymer gelator (PG) PEGDM (poly(ethyleneglycol) dimethacrylate) are reported, and an active pharmaceutical ingredient (naproxen, NPX) is incorporated. The use of PEGDM as PG enhances the mechanical stiffness of the hybrid gel (G′ increases from 400 to 4500 Pa) – the LMWG enhances its stability to very high frequency. Use of DBS-CONHNH2 as LMWG enables interactions with NPX and hence allows pH-mediated NPX release – the PG network is largely orthogonal and only interferes to a limited extent. Use of photo-activated PEGDM as PG enables spatially-resolved photo-patterning of robust hybrid gel domains within a preformed LMWG network – the presence of the LMWG enhances the spatial resolution. The photo-patterned multi-domain gel retains pH-mediated NPX release properties and directionally releases NPX into a compartment of higher pH. The two components within these hybrid PG/LMWG hydrogels therefore act largely independently of one another, although they do modify each others properties in subtle ways. Hybrid hydrogels capable of spatially controlled unidirectional release have potential applications in tissue engineering and drug-delivery

    <i>N</i>-Alkylhydantoins as New Organogelators and Their Ability to Create Thixotropic Mixed Molecular Organogels

    No full text
    The author reported molecular organogels using N-alkylhydantoins as new low-molecular-weight gelators for the first time, and thixotropic mixed molecular organogels using a set of N-alkylhydantoin gelators with different alkyl chain lengths. These homologous compounds with different alkyl chains are found to form macroscopic crystals or solution states in polar solvents, but form homogeneous organogels in non-polar solvents, such as n-octane and squalane. Although there is no significant increase in the minimum gelation concentration of the mixed molecular gels using squalane as a solvent, these mixed molecular organogels show improved mechanical properties, especially in their thixotropic behavior, which is not observed in the single N-alkylhydantoin gels. Furthermore, they exhibit reversible thixotropic behavior with quick recovery of the gel state in a minute by quantitatively measuring dynamic viscoelasticity measurements of rheometry of mixed molecular gels. Based on the morphological observations of the xerogels, the self-assembling fibers of the gelators become finer, indicating an increase in the density of the mesh structure inside the gel, which could explain its thixotropic behavior. These thixotropic mixed molecular gels may be applicable to ointment base materials, because they are gelled with squalane oil

    Development of Thixotropic Molecular Oleogels Comprising Alkylanilide Gelators by Using a Mixing Strategy

    No full text
    Molecular oleogels have the potential to be used as materials in healthcare applications. However, their design and synthesis are complex, thus requiring simple and effective methods for their preparation. This paper reports on alkylanilides that are low molecular-weight organogelators, which when appropriately mixed with different alkyl chain lengths could result in the formation of mixed molecular gels that exhibit excellent gel-forming ability and mechanical properties. In addition, the single and mixed molecular organogel systems were found to be applicable as single and mixed molecular oleogel systems capable of gelling oils such as olive oil and squalane. This has been found to be true, especially in molecular oleogel systems consisting of squalane, which is used as solvents in healthcare. The mixed squalene-molecular oleogel systems showed an increase in the critical (minimum) gelation concentration from 1.0 to 0.1 wt.% in the single system and an improvement in the thixotropic behavior recovery time. The thixotropic behavior of the molecular oleogels in the mixed system was quantitatively evaluated through dynamic viscoelasticity measurements; however, it was not observed for the single-system molecular oleogels. Scanning electron microscopy of the xerogels suggested that this behavior is related to the qualitative improvement of the network owing to the refinement of the mesh structure. These mixed molecular oleogels, composed of alkylanilides displaying such thixotropic behavior, could be used as candidates for ointment-base materials in the healthcare field

    Low-Molecular-Weight Gelators as Base Materials for Ointments

    No full text
    Ointments have been widely used as an efficient means of transdermal drug application for centuries. In order to create ointments suitable for various new medicinal drugs, the creation of ointment base materials, such as gels, has attracted much research attention in this decade. On the other hand, the chemical tuning of low-molecular-weight gelators (LMWGs) has been increasingly studied for two decades because LMWGs can be tailored for different purposes by molecular design and modification. In this review, several series of studies related to the creation of ointment base materials with enhanced properties using existing and newly-created LMWGs are summarized

    Creation of Polymer Hydrogelator/Poly(Vinyl Alcohol) Composite Molecular Hydrogel Materials

    No full text
    Polymer hydrogels, including molecular hydrogels, are expected to become materials for healthcare and medical applications, but there is a need to create new functional molecular gels that can meet the required performance. In this paper, for creating new molecular hydrogel materials, the gel formation behavior and its rheological properties for the molecular gels composed of a polymer hydrogelator, poly(3-sodium sulfo-p-phenylene-terephthalamide) polymer (NaPPDT), and water-soluble polymer with the polar group, poly(vinyl alcohol) (PVA) in various concentrations were examined. Molecular hydrogel composites formed from simple mixtures of NaPPDT aqueous solutions (0.1 wt.%~1.0 wt.%) and PVA aqueous solutions exhibited thixotropic behavior in the relatively low concentration region (0.1 wt.%~1.0 wt.%) and spinnable gel formation in the dense concentration region (4.0 wt.%~8.0 wt.%) with 1.0 wt.% NaPPDT aq., showing a characteristic concentration dependence of mechanical behavior. In contrast, each single-component aqueous solution showed no such gel formation in the concentration range in the present experiments. No gel formation behavior was also observed when mixed with common anionic polymers other than NaPPDT. This improvement in gel-forming ability due to mixing may be due to the increased density of the gel’s network structure composed of hydrogelator and PVA and rigidity owing to NaPPDT

    Creation of Molecular Gel Materials Using Polyrotaxane-Derived Polymeric Organogelator

    No full text
    Molecular gels, which are soft and flexible materials, are candidates for healthcare, cosmetic base, and electronic applications as new materials. In this study, a new polymeric organogelator bearing a polyrotaxane (PR) structure was developed and could induce the gelation of N′,N″-dimethylformamide (DMF), a known solvent for dissolving polymeric materials and salts. Furthermore, the resulting DMF molecular gels exhibited thixotropic properties, observed by the inversion method using vials, which are essential for gel spreading. The scanning electron microscopy of the xerogels suggested that the gel-forming ability and thixotropic property of gels were imparted by the network of the laminated aggregates of thin layer material similar to those of other gels made of clay materials. This thin layer material would be formed by the aggregation of polymeric organogelators. The dynamic viscoelasticity measurements of the obtained gels revealed the stability and pseudo-thixotropic behaviors of the obtained gels, as well as a specific concentration effect on the mechanical behavior of the gels attributed to the introduction of the PR structure. Additionally, the preparation of the polymer organogelator/polymer composites was investigated to improve the mechanical properties via the filler effect induced by the agglomerates of organogelator. Moreover, the tensile tests confirmed that the introduction of the gelator enhanced the mechanical properties of the composites

    Polymeric Hydrogelator-Based Molecular Gels Containing Polyaniline/Phosphoric Acid Systems

    No full text
    To expand the range of applications of hydrogels, researchers are interested in developing novel molecular hydrogel materials that have affinities for the living body and the ability to mediate electrical signals. In this study, a simple mixing method for creating a novel composite molecular gel is employed, which combines a hydrophilic conductive polymer, a polyaniline/phosphoric acid complex, and a polymer hydrogelator as a matrix. The composite hydrogel showed an improved gel-forming ability; more effective mechanical properties, with an increased strain value at the sol&ndash;gel transition point compared to the single system, which may be sufficient for paintable gel; and a better electrochemical response, due to the electrically conducting polyaniline component. These findings demonstrate the applicability of the new composite hydrogels to new potential paintable electrode materials
    • …
    corecore