352 research outputs found

    Microwave Dielectrics with Perovskite-Type Structure

    Get PDF
    Most electroceramics are ferroelectrics, but microwave dielectrics are mostly paraelectrics with a center of symmetry i. Microwave dielectrics should possess a perfect crystal structure with neither defects nor internal strain in order to be microwave friendly. They have been used in resonators and filters in mobile telecommunications devices. Perovskite and related compounds are also mostly ferroelectrics, but paraelectrics with a perovskite structure also exist, and are used in microwave dielectrics. Owing to the flexibility of the perovskite structure, many kinds of microwave dielectrics with a perovskite structure have been designed for microwave dielectrics. In this chapter, simple and complex perovskite, and perovskite related materials such as pseudo-tungsten-bronze solid solutions and homologous compounds are introduced for microwave dielectrics. The microwave dielectric properties are revealed through the crystalline structure of the material. Therefore, the relationship between the crystalline structure and properties of the material is presented, and is expected to be of use in the design of novel dielectrics. As many superior materials for microwave dielectrics have been developed and are expected to be used in new applications such as wireless sensors and wireless power transfer by resonant coupling, wave absorption by interference and transparent ceramics with no birefringence, these new applications are also discussed

    Origin of Piezoelectricity on Langasite

    Get PDF

    Dielectric Losses of Microwave Ceramics Based on Crystal Structure

    Get PDF
    So far, many microwave dielectric materials have been investigated for a range of telecommunication applications. In dielectrics, the three main dielectric properties are quality factor (Q), dielectric constant and temperature coefficient of resonant frequency. Among these, the most essential dielectric property is Q. More specifically, Q is the inverse of the dielectric loss (tanδ); thus Q = 1/tanδ. There are two kinds of losses: those depending on crystal structure and losses due to external factors. The former is intrinsic losses such as ordering, symmetry, and phonon vibration. The latter is extrinsic losses due to factors such as grain size, defects, inclusions and distortion. In this chapter, the authors present the origin of dielectric losses based on the crystal structure. An ideal and well-proportional crystal structure constitutes a low loss material. Most dielectric materials are paraelectrics with inversion symmetry i and high symmetry. In general, it is believed that ordering gives rise to a high Q, on which many researchers are casting doubt. In the case of complex perovskites, the symmetry changes from cubic to trigonal. Ordering and symmetry should be compared with the structure. In this chapter, three essential conditions for the origin of high Q such as high symmetry, compositional ordering and compositional density are presented

    Novel temperature stable high-ε r microwave dielectrics in the Bi 2 O 3 –TiO 2 –V 2 O 5 system

    Get PDF
    In the present work, a series of low temperature firing (1 − x)BiVO4–xTiO2 (x = 0.4, 0.50, 0.55 and 0.60) microwave dielectric ceramics was prepared using traditional solid state reaction method. From back-scattered electron images (BEI), X-ray diffraction (XRD) and energy dispersive analysis (EDS), there was negligible reaction between BiVO4 and TiO2 at the optimal sintering temperature ∼900 °C. As x increased from 0.4 to 0.60, permittivity (εr) increased from 81.8 to 87.7, quality factor value (Qf) decreased from 12 290 to 8240 GHz and temperature coefficient (TCF) shifted from −121 to +46 ppm per °C. Temperature stable microwave dielectric ceramic was obtained in 0.45BiVO4–0.55TiO2 composition sintered at 900 °C with a εr ∼ 86, a Qf ∼ 9500 GHz and a TCF ∼ −8 ppm per °C. Far-infrared reflectivity fitting indicated that stretching of Bi–O and Ti–O bonds in this system dominated dielectric polarization. This series of ceramics are promising not only for low temperature co-fired ceramic (LTCC) technology but also as substrates for physically and electrically small dielectrically loaded micro-strip patch antennas

    肥大型心筋症におけるプロコラーゲンIIIペプチド

    Get PDF
    取得学位 : 博士(医学), 学位授与番号 : 医博乙第1287号,学位授与年月日:平成6年3月2日,学位授与年:199

    KNOWLEDGE MANAGEMENT FOR MAINTENANCE ACTIVITIES IN THE MANUFACTURING SECTOR

    Get PDF
    Maintenance is an indispensable part of the business process and plays an important role in an organisation’s success and survival. The main purpose of maintenance is to ensure equipment functions at its original optimal level. Thus, the knowledge and skills of operators are crucial and in demand. This paper presents a knowledge management of maintenance activities transfer method. Knowledge management is a process that a company cannot avoid, because it is a step in providing the necessary information for business performance measurements. Based on the example of a knowledge management system for a consultant company, we propose a knowledge repository or warehouse for maintenance activities that consists of four elements: best practice, databases, discussion forums and assessment tools. Each element has its own role and contribution towards better maintenance activities. Therefore, knowledge management has a deep relationship with performance evaluation or measurement

    A Potassium Diboryllithate: Synthesis, Bonding Properties, and the Deprotonation of Benzene

    Full text link
    A potassium diboryllithate (B2LiK) was synthesized and structurally characterized. DFT calculations, including NPA and AIM analyses of B2LiK, revealed ionic interactions between the two bridging boryl anions and Li+ and K+. Upon standing in benzene, B2LiK deprotonated the solvent to form a hydroborane and a phenylborane. On the basis of DFT calculations, a detailed reaction mechanism, involving deprotonation and hydride/phenyl exchange processes, is proposed. An NBO analysis of the transition state for the deprotonation of benzene suggests that the deprotonation should be induced by the coordination of benzene to the K+.A â LiK â of work: A potassium diboryllithate, B2LiK, was synthesized and structurally characterized. The bonding situation in this compound was examined by NMR, XRD, NPA, and AIM analyses. B2LiK is able to deprotonate benzene with concomitant formation of phenylborane as the major product. A detailed reaction mechanism based on DFT calculations suggests that the deprotonation of benzene should be initiated by a transition state involving the coordination of benzene to K+.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137264/1/anie201605005_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137264/2/anie201605005-sup-0001-misc_information.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137264/3/anie201605005.pd

    Tuning dielectric properties in ceramics with anisotropic grain structure: The effect of sintering temperature on BaLa4Ti4O15

    Get PDF
    The orientation and grain aspect ratio, size and distribution of BaLa4Ti4O15 (BLT) ceramics have been studied as a function of sintering temperature with a view to elucidating a general principle by which the microwave properties (MW) can be understood/tuned in systems which exhibit anisotropic grain structures. For BLT sintered at 1500 °C, εr reaches a maximum of 51, with tan δ minimum at 0.002 and τεr = − 17 ppm/°C but εr subsequently varies non-linearly as sintering temperature increases. Since εr and τεr are directly proportional in the absence of a phase transition, the variation of τεr as a function of the sintering temperature is also nonlinear. This behaviour is related with variations in the orientation and grain aspect ratio, size and distribution with the sintering temperature and it is demonstrated that by controlling sintering conditions, microwave dielectric properties can be tuned. It is proposed that this is a general phenomenon which can also be used to explain the variation and tune the properties of other ceramic systems with anisotropic grain structures

    Superluminescent diode with a broadband gain based on self-assembled InAs quantum dots and segmented contacts for an optical coherence tomography light source

    Get PDF
    We report a broadband-gain superluminescent diode (SLD) based on self-assembled InAs quantum dots (QDs) for application in a high-resolution optical coherence tomography (OCT) light source. Four InAs QD layers, with sequentially shifted emission wavelengths achieved by varying the thickness of the In0.2Ga0.8As strain-reducing capping layers, were embedded in a conventional p-n heterojunction comprising GaAs and AlGaAs layers. A ridge-type waveguide with segmented contacts was formed on the grown wafer, and an as-cleaved 4-mm-long chip (QD-SLD) was prepared. The segmented contacts were effective in applying a high injection current density to the QDs and obtaining emission from excited states of the QDs, resulting in an extension of the bandwidth of the electroluminescence spectrum. In addition, gain spectra deduced with the segmented contacts indicated a broadband smooth positive gain region spanning 160 nm. Furthermore, OCT imaging with the fabricated QD-SLD was performed, and OCT images with an axial resolution of ∼4 μm in air were obtained. These results demonstrate the effectiveness of the QD-SLD with segmented contacts as a high-resolution OCT light source
    corecore