11 research outputs found

    Tamarindus indica Extract Alters Release of Alpha Enolase, Apolipoprotein A-I, Transthyretin and Rab GDP Dissociation Inhibitor Beta from HepG2 Cells

    Get PDF
    Background: The plasma cholesterol and triacylglycerol lowering effects of Tamarindus indica extract have been previously described. We have also shown that the methanol extract of T. indica fruit pulp altered the expression of lipid-associated genes including ABCG5 and APOAI in HepG2 cells. In the present study, effects of the same extract on the release of proteins from the cells were investigated using the proteomics approach. Methodology/Principal Findings: When culture media of HepG2 cells grown in the absence and presence of the methanol extract of T. indica fruit pulp were subjected to 2-dimensional gel electrophoresis, the expression of seven proteins was found to be significantly different (p<0.03125). Five of the spots were subsequently identified as alpha enolase (ENO1), transthyretin (TTR), apolipoprotein A-I (ApoA-I; two isoforms), and rab GDP dissociation inhibitor beta (GDI-2). A functional network of lipid metabolism, molecular transport and small molecule biochemistry that interconnects the three latter proteins with the interactomes was identified using the Ingenuity Pathways Analysis software. Conclusion/Significance: The methanol extract of T. indica fruit pulp altered the release of ENO1, ApoA-I, TTR and GDI-2 from HepG2 cells. Our results provide support on the effect of T. indica extract on cellular lipid metabolism, particularly that of cholesterol

    Die Hochmittelalterliche Bebauung am Limmatufer. Archäologische Befunde und Funde von Zürich - Limmatquai 82

    Get PDF
    Die Profile im Hinterhaus Limmatquai 82 unter dem Mikroskop (Ismail-Meyer, K.) Während der archäologischen Untersuchungen der ZürcherStadtarchäologie im Limmatquai 82 im Jahr 2007 konntenim Hinterhaus aus zwei Profilen insgesamt vier mikromorphologischeBodenproben entnommen werden. Das Ziel war, Schichtbildungsprozesse, die zur Akkumulationvon unterschiedlichen Ablagerungen führten,besser zu verstehen. Die Ablagerungen des Hinterhauseszeichnen sich durch vielfältige Schichten aus. Dabei sindvor allem Anreicherung von Sand und Kies zu nennen, diemit Feuerungsrückständen vermischt sein können. Eshandelt es sich hier um Holzkohlen, Aschen, Brandkalk,Phytolithen mit Brandspuren und Brandaggregate

    High-Density Lipoprotein Transport Through Aortic Endothelial Cells Involves Scavenger Receptor BI and ATP-Binding Cassette Transporter G1

    Full text link
    Cholesterol efflux from macrophage foam cells is a rate-limiting step in reverse cholesterol transport. In this process cholesterol acceptors like high-density lipoproteins (HDL) and apolipoprotein (apo)A-I must cross the endothelium to get access to the donor cells in the arterial intima. Previously, we have shown that apoA-I passes a monolayer of aortic endothelial cells (ECs) from the apical to the basolateral side by transcytosis, which is modulated by the ATP-binding cassette transporter (ABC)A1. Here, we analyzed the interaction of mature HDL with ECs. ECs bind HDL in a specific and saturable manner. Both cell surface biotinylation experiments and immunofluorescence microscopy of HDL recovered approximately 30% of the cell-associated HDL intracellularly. Cultivated on inserts ECs bind, internalize, and translocate HDL from the apical to the basolateral compartment in a specific and temperature-dependent manner. The size of the translocated particle was reduced, but its protein moiety remained intact. Using RNA interference, we investigated the impact of SR-BI, ABCA1, and ABCG1 on binding, internalization, and transcytosis of HDL by ECs. HDL binding was reduced by 50% and 30% after silencing of SR-BI and ABCG1, respectively, but not at all after diminishing ABCA1 expression. Knock down of SR-BI and, even more so, ABCG1 reduced HDL transcytosis but did not affect inulin permeability. Cosilencing of both proteins did not further reduce HDL binding, internalization, or transport. In conclusion, ECs transcytose HDL by mechanisms that involve either SR-BI or ABCG1 but not ABCA1

    Trimerized apolipoprotein A-I (TripA) forms lipoproteins, activates lecithin:cholesterol acyltransferase, elicits lipid efflux, and is transported through aortic endothelial cells

    Full text link
    Apolipoprotein A-I (apoA-I) exerts many potentially anti-atherogenic properties and is therefore attractive for prevention and therapy of coronary heart disease. Since induction of apoA-I production by small molecules has turned out as difficult, application of exogenous apoA-I is pursued as an alternative therapeutic option. To counteract fast renal filtration of apoA-I, a trimeric high-molecular weight variant of apoA-I (TripA) was produced by recombinant technology. We compared TripA and apoA-I for important properties in reverse cholesterol transport. Reconstituted high-density lipoproteins (rHDL) containing TripA or apoA-I together with palmitoyl-2-oleyl-phosphatidylcholine (POPC) differed slightly by size. Compared to apoA-I, TripA activated lecithin:cholesterol acyltransferase (LCAT) with similar maximal velocity but concentration leading to half maximal velocity was slightly reduced (K(m)=2.1±0.3μg/mL vs. 0.59±0.06μg/mL). Both in the lipid-free form and as part of rHDL, TripA elicited cholesterol efflux from THP1-derived macrophages with similar kinetic parameters and response to liver-X-receptor activation as apoA-I. Lipid-free TripA is bound and transported by aortic endothelial cells through mechanisms which are competed by apoA-I and TripA and inhibited by knock-down of ATP-binding cassette transporter (ABC) A1. Pre-formed TripA/POPC particles were bound and transported by endothelial cells through mechanisms which are competed by excess native HDL as well as reconstituted HDL containing either apoA-I or TripA and which involve ABCG1 and scavenger receptor B1 (SR-BI). In conclusion, apoA-I and TripA show similar in vitro properties which are important for reverse cholesterol transport. These findings are important for further development of TripA as an anti-atherosclerotic drug
    corecore