1,404 research outputs found

    Diurnal temperature range over Europe between 1950 and 2005

    Get PDF
    International audienceIt has been widely accepted that diurnal temperature range (DTR) decreased on a global scale during the second half of the twentieth century. Here we show however, that the long-term trend of annual DTR has reversed from a decrease to an increase during the 1970s in Western Europe and during the 1980s in Eastern Europe. The analysis is based on the high-quality dataset of the European Climate Assessment and Dataset Project, from which we selected approximately 200 stations, covering the area from Iceland to Algeria and from Turkey to Russia for 1950 to 2005. We investigate national and regional annual means as well as the pan-European mean with respect to trends and reversal periods. 17 of the 24 investigated regions including the pan-European mean show a statistical significant increase since 1990 at the latest. Of the remaining 7 regions, 2 show a non-significant increase, 3 a significant decrease and the remaining 2 no significant trend. The long-term change in DTR is governed by both surface shortwave and longwave radiation, the former of which has undergone a change from dimming to brightening. Consequently, we discuss the connections between DTR, shortwave radiation and sulfur emissions which are thought to be amongst the most important factors influencing the incoming solar radiation through the primary and secondary aerosol effect. We find reasonable agreement between trends in SO2 emissions, radiation and DTR in areas affected by high pollution. Consequently, we conclude that the long-term trends in DTR are mostly determined by changes in emissions and the associated changes in incoming solar radiation

    Laminar Spirals in the Outer Stationary Cylinder Couette-Taylor System

    Get PDF
    We present numerical simulations to demonstrate the existence of laminar spiral flows between both finite and infinite length concentric cylinders and finite truncated cones where only the inner wall rotates. The velocities and pressure are calculated by a spectral element/Fourier method. Different gap ratios are investigated. Convergence of the numerical results is shown with reference to flows between infinite cylinders. The presence of top and bottom endplates results in vortex dislocations that are observed at the frontiers between the Ekman vortices present at each end and the spiral vortices

    Pressure-induced phase transition of Bi2Te3 into the bcc structure

    Full text link
    The pressure-induced phase transition of bismuth telluride, Bi2Te3, has been studied by synchrotron x-ray diffraction measurements at room temperature using a diamond-anvil cell (DAC) with loading pressures up to 29.8 GPa. We found a high-pressure body-centered cubic (bcc) phase in Bi2Te3 at 25.2 GPa, which is denoted as phase IV, and this phase apperars above 14.5 GPa. Upon releasing the pressure from 29.8 GPa, the diffraction pattern changes with pressure hysteresis. The original rhombohedral phase is recovered at 2.43 GPa. The bcc structure can explain the phase IV peaks. We assumed that the structural model of phase IV is analogous to a substitutional binary alloy; the Bi and Te atoms are distributed in the bcc-lattice sites with space group Im-3m. The results of Rietveld analysis based on this model agree well with both the experimental data and calculated results. Therefore, the structure of phase IV in Bi2Te3 can be explained by a solid solution with a bcc lattice in the Bi-Te (60 atomic% tellurium) binary system.Comment: 12 pages, 5 figure

    Transmission electron microscopy investigation of separated nucleation and in-situ nucleation in AA7050 aluminium alloy

    Get PDF
    High resolution transmission electron microscopy (HRTEM) with nanometer-scaled energy-dispersive X-ray (EDX) was employed to investigate the transformation mechanisms of the GP zone → η′ → η precipitation sequence of AA7050, an Al-Zn-Mg-Cu alloy. Serial in-situ HRTEM frames revealed that separated nucleation of an η′ precipitate occurred elsewhere as the adjacent GPII zone dissolved. Evidence from HRTEM coupled with EDX showed that in-situ nucleation of a new η2 precipitate (one form of η) took place, wherein it gradually developed from the original η′ precipitate via a similar hexagonal structure with different compositions. The in-situ transition product was composed of two distinctive regions; one was identified as η′, and the other, as η

    Targeting the undruggable: exploiting neomorphic features of fusion oncoproteins in childhood sarcomas for innovative therapies

    Get PDF
    While sarcomas account for approximately 1% of malignant tumors of adults, they are particularly more common in children and adolescents affected by cancer. In contrast to malignancies that occur in later stages of life, childhood tumors, including sarcoma, are characterized by a striking paucity of somatic mutations. However, entity-defining fusion oncogenes acting as the main oncogenic driver mutations are frequently found in pediatric bone and soft-tissue sarcomas such as Ewing sarcoma (EWSR1-FLI1), alveolar rhabdomyosarcoma (PAX3/7-FOXO1), and synovial sarcoma (SS18-SSX1/2/4). Since strong oncogene-dependency has been demonstrated in these entities, direct pharmacological targeting of these fusion oncogenes has been excessively attempted, thus far, with limited success. Despite apparent challenges, our increasing understanding of the neomorphic features of these fusion oncogenes in conjunction with rapid technological advances will likely enable the development of new strategies to therapeutically exploit these neomorphic features and to ultimately turn the \textquotedblundruggable\textquotedbl into first-line target structures. In this review, we provide a broad overview of the current literature on targeting neomorphic features of fusion oncogenes found in Ewing sarcoma, alveolar rhabdomyosarcoma, and synovial sarcoma, and give a perspective for future developments. Graphical abstract Scheme depicting the different targeting strategies of fusion oncogenes in pediatric fusion-driven sarcomas. Fusion oncogenes can be targeted on their DNA level (1), RNA level (2), protein level (3), and by targeting downstream functions and interaction partners (4)
    • …
    corecore