327 research outputs found
Angular dependence of novel magnetic quantum oscillations in a quasi-two-dimensional multiband Fermi liquid with impurities
The semiclassical Lifshitz-Kosevich-type description is given for the angular
dependence of quantum oscillations with combination frequencies in a multiband
quasi-two-dimensional Fermi liquid with a constant number of electrons. The
analytical expressions are found for the Dingle, thermal, spin, and amplitude
(Yamaji) reduction factors of the novel combination harmonics, where the latter
two strongly oscillate with the direction of the field. At the "magic" angles
those factors reduce to the purely two-dimensional expressions given earlier.
The combination harmonics are suppressed in the presence of the non-quantized
("background") states, and they decay exponentially faster with temperature
and/or disorder compared to the standard harmonics, providing an additional
tool for electronic structure determination. The theory is applied to
SrRuO.Comment: 5 pages, 2 figures, minor typos correcte
Spin triplet superconductivity with line nodes in Sr2RuO4
Several possible odd-parity states are listed up group-theoretically and
examined in light of recent experiments on SrRuO. Those include some of
the -wave pairing states, {\mib d}({\mib k})\propto{\hat{\mib z}}
k_xk_y(k_x + {\rm i}k_y) and {\hat{\mib z}} (k_x^2-k_y^2)(k_x + {\rm i}k_y)
and other {\hat{\mib z}} (k_x + {\rm i}k_y)\cos ck_z ( is the -axis
lattice constant) as most plausible candidates. These are time-reversal
symmetry broken states and have line nodes running either vertically (the
former two) or horizontally (the latter), consistent with experiments.
Characterizations of these states and other possibilities are given.Comment: 4 pages, no figure
Angular magnetoresistance oscillations in bilayers in tilted magnetic fields
Angular magnetoresistance oscillations (AMRO) were originally discovered in
organic conductors and then found in many other layered metals. It should be
possible to observe AMRO to semiconducting bilayers as well. Here we present an
intuitive geometrical interpretation of AMRO as the Aharonov-Bohm interference
effect, both in real and momentum spaces, for balanced and imbalanced bilayers.
Applications to the experiments with bilayers in tilted magnetic fields in the
metallic state are discussed. We speculate that AMRO may be also observed when
each layer of the bilayer is in the composite-fermion state.Comment: 4 pages, 5 figures, Proceedings of EP2DS-16. V.2: figures corrected,
one reference added. V3: one reference adde
Theory of the Shubnikov-de Haas effect in quasi-two-dimensional metals
The Shubnikov - de Haas effect in quasi-two-dimensional normal metals is
studied. The interlayer conductivity is calculated using the Kubo formula. The
electron scattering on short-range is considered in the self-consistent Born
approximation. The result obtained differs from that derived from the Boltzmann
transport equation. This difference is shown to be a general feature of
conductivity in magnetic field. A detailed description of the two new
qualitative effects -- the field-dependent phase shift of beats and of the slow
oscillations of conductivity is provided. The results obtained are applicable
to strongly anisotropic organic metals and to other quasi-two-dimensional
compounds.Comment: 10 page
The effect of an in-plane magnetic field on the interlayer transport of quasiparticles in layered superconductors
We consider the quasiparticle c-axis conductivity in highly anisotropic
layered compounds in the presence of the magnetic field parallel to the layers.
We show that at low temperatures the quasiparticle interlayer conductivity
depends strongly on the orientation of the in-plane magnetic field if the
excitation gap has nodes on the Fermi surface. Thus measurements of the
angle-dependent c-axis (out-of-plane) magnetoresistance, as a function of the
orientation of the magnetic field in the layers, provide information on the
momentum dependence of the superconducting gap (or pseudogap) on the Fermi
surface. Clean and highly anisotropic layered superconductors seem to be the
best candidates for probing the existence and location of the nodes on the
Fermi surface.Comment: 4 pages RevTeX, including 2 PostScript figures, to appear in Phys.
Rev. Let
Cyclotron resonance in the layered perovskite superconductor Sr2RuO4
We report a detailed study of the magnetic-field-orientation dependence of
the millimetre-wave magnetoconductivity of the superconductor Sr2RuO4 We find
two harmonic series of cyclotron resonances. We assign the first, corresponding
to a quasiparticle mass of , where is the
free-electron mass, to the Fermi-surface section. We assign the second
series, which contains only odd harmonics, to cyclotron resonance of the
Fermi-surface section, yielding a quasiparticle mass of . A third, single cyclotron resonance, corresponding to a
quasiparticle mass of , is attributed to the
Fermi-surface section. In addition, we find a very strong absorption mode in
the presence of a magnetic field component parallel to the
quasi-two-dimensional planes of the sample. Its dependence on the orientation
of the magnetic field cannot be described in the context of conventional
cyclotron resonance, and the origin of this mode is not yet clear.Comment: Submitted to J. Phys. Cond. Ma
Cyclotron Resonance in the Layered Perovskite Superconductor Sr2RuO4
We have measured the cyclotron masses in Sr2RuO4 through the observation of
periodic-orbit-resonances - a magnetic resonance technique closely related to
cyclotron resonance. We obtain values for the alpha, beta and gamma Fermi
surfaces of (4.33+/-0.05)me, (5.81+/-0.03)me and (9.71+/-0.11)me respectively.
The appreciable differences between these results and those obtained from de
Haas- van Alphen measurements are attributable to strong electron-electron
interactions in this system. Our findings appear to be consistent with
predictions for a strongly interacting Fermi liquid; indeed, semi-quantitative
agreement is obtained for the electron pockets beta and gamma.Comment: 4 pages + 3 figure
Unrestricted Hartree-Fock Analysis of SrCaRuO
We investigated the electronic and magnetic structure of
SrCaRuO () on the basis of the
double-layered three-dimensional multiband Hubbard model with spin-orbit
interaction. In our model, lattice distortion is implemented as the modulation
of transfer integrals or a crystal field. The most stable states are estimated
within the unrestricted Hartree-Fock approximation, in which the colinear spin
configurations with five different spin-quantization axes are adopted as
candidates. The obtained spin structures for some particular lattice
distortions are consistent with the neutron diffraction results for
CaRuO. Also, some magnetic phase transitions can occur due to
changes in lattice distortion. These results facilitate the comprehensive
understanding of the phase diagram of SrCaRuO.Comment: 16 pages, 7 figure
Temperature dependence of the upper critical field of an anisotropic singlet superconductivity in a square lattice tight-binding model in parallel magnetic fields
Upper critical field parallel to the conducting layer is studied in
anisotropic type-II superconductors on square lattices. We assume enough
separation of the adjacent layers, for which the orbital pair-breaking effect
is suppressed for exactly aligned parallel magnetic field. In particular, we
examine the temperature dependence of the critical field H_c(T) of the
superconductivity including the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO or LOFF)
state, in which the Cooper pairs have non-zero center-of-mass momentum q. In
the system with the cylindrically symmetric Fermi-surface, it is known that
H_c(T) of the d-wave FFLO state exhibits a kink at a low temperature due to a
change of the direction of q in contrast to observations in organic
superconductors. It is shown that the kink disappears when the Fermi-surface is
anisotropic to some extent, since the direction of q is locked in an optimum
direction independent of the temperature.Comment: 5 pages, 5 figures, revtex.sty, submitted to J.Phys.Soc.Jp
Cyclotron effective masses in layered metals
Many layered metals such as quasi-two-dimensional organic molecular crystals
show properties consistent with a Fermi liquid description at low temperatures.
The effective masses extracted from the temperature dependence of the magnetic
oscillations observed in these materials are in the range, m^*_c/m_e \sim 1-7,
suggesting that these systems are strongly correlated. However, the ratio
m^*_c/m_e contains both the renormalization due to the electron-electron
interaction and the periodic potential of the lattice. We show that for any
quasi-two-dimensional band structure, the cyclotron mass is proportional to the
density of states at the Fermi energy. Due to Luttinger's theorem, this result
is also valid in the presence of interactions. We then evaluate m_c for several
model band structures for the \beta, \kappa, and \theta families of
(BEDT-TTF)_2X, where BEDT-TTF is bis-(ethylenedithia-tetrathiafulvalene) and X
is an anion. We find that for \kappa-(BEDT-TTF)_2X, the cyclotron mass of the
\beta-orbit, m^{*\beta}_c, is close to 2 m^{*\alpha}_c, where m^{*\alpha}_c is
the effective mass of the \alpha- orbit. This result is fairly insensitive to
the band structure details. For a wide range of materials we compare values of
the cyclotron mass deduced from band structure calculations to values deduced
from measurements of magnetic oscillations and the specific heat coefficient.Comment: 12 pages, 3 eps figure
- …