2,781 research outputs found

    Physics with a very long neutrino factory baseline

    Full text link
    We discuss the neutrino oscillation physics of a very long neutrino factory baseline over a broad range of lengths (between 6000 km and 9000 km), centered on the ``magic baseline'' (\sim 7500 km) where correlations with the leptonic CP phase are suppressed by matter effects. Since the magic baseline depends only on the density, we study the impact of matter density profile effects and density uncertainties over this range, and the impact of detector locations off the optimal baseline. We find that the optimal constant density describing the physics over this entire baseline range is about 5% higher than the average matter density. This implies that the magic baseline is significantly shorter than previously inferred. However, while a single detector optimization requires fine-tuning of the (very long) baseline length, its combination with a near detector at a shorter baseline is much less sensitive to the far detector location and to uncertainties in the matter density. In addition, we point out different applications of this baseline which go beyond its excellent correlation and degeneracy resolution potential. We demonstrate that such a long baseline assists in the improvement of the θ13\theta_{13} precision and in the resolution of the octant degeneracy. Moreover, we show that the neutrino data from such a baseline could be used to extract the matter density along the profile up to 0.24% at 1σ1 \sigma for large sin22θ13\sin^2 2 \theta_{13}, providing a useful discriminator between different geophysical models.Comment: 27 pages, 11 figures. Minor changes, references added; version to appear in Phys. Rev.

    Non-unitarity effects in a realistic low-scale seesaw model

    Full text link
    We analyze the structure of the non-unitary leptonic mixing matrix in the inverse seesaw model with heavy singlets accessible at the LHC. In this model, unlike in the usual TeV seesaw scenarios, thelow-scale right-handed neutrinos do not suffer from naturalness issues. Underlying correlations among various parameters governing the non-unitarity effects are established, which leads to a considerable improvement of the generic non-unitarity bounds. In view of this, we study the discovery potential of the non-unitarity effects at future experiments, focusing on the sensitivity limits at a neutrino factory.Comment: 6 pages, 2 figures, numerical results updated, references adde

    Initial experiments concerning quantum information processing in rare-earth-ion doped crystals

    Full text link
    In this paper initial experiments towards constructing simple quantum gates in a solid state material are presented. Instead of using specially tailored materials, the aim is to select a subset of randomly distributed ions in the material, which have the interaction necessary to control each other and therefore can be used to do quantum logic operations. The experimental results demonstrate that part of an inhomogeneously broadened absorption line can be selected as a qubit and that a subset of ions in the material can control the resonance frequency of other ions. This opens the way for the construction of quantum gates in rare-earth-ion doped crystals.Comment: 24 pages, including 12 figure

    Neutrino oscillations and mixings with three flavors

    Get PDF
    Global fits to all data of candidates for neutrino oscillations are presented in the framework of a three-flavor model. The analysis excludes mass regions where the MSW effect is important for the solar neutrino problem. The best fit gives θ128.9,θ24.2,θ3m221.11eV2\theta_1 \approx 28.9^\circ, \theta_2 \approx 4.2^\circ, \theta_3 - m_2^2 \approx 1.11 eV^2 indicating essentially maximal mixing between the two lightest neutrino mass eigenstates

    Renormalization group running of neutrino parameters in the inverse seesaw model

    Full text link
    We perform a detailed study of the renormalization group equations in the inverse seesaw model. Especially, we derive compact analytical formulas for the running of the neutrino parameters in the standard model and the minimal supersymmetric standard model, and illustrate that, due to large Yukawa coupling corrections, significant running effects on the leptonic mixing angles can be naturally obtained in the proximity of the electroweak scale, perhaps even within the reach of the LHC. In general, if the mass spectrum of the light neutrinos is nearly degenerate, the running effects are enhanced to experimentally accessible levels, well suitable for the investigation of the underlying dynamics behind the neutrino mass generation and the lepton flavor structure. In addition, the effects of the seesaw thresholds are discussed, and a brief comparison to other seesaw models is carried out.Comment: 30 pages, 7 figures. Final version published in Phys. Rev. D. v3: Typo in Eq. (33) correcte

    α2-macroglobulin and α1-inhibitor-3 mRNA expression in the rat liver after slow interleukin-1 stimulation

    Get PDF
    In this study we have investigated total fiver RNA and the expression of mRNA in the rat fiver in vivo after a slow stimulation of interleukin-1. A total dose of 4 μg interleukin-1β was administered via a subcutaneously implanted osmotic minipump over a period of 7 days. Plasma concentrations of α2-macroglobulin manifested a rapid increase, reaching a peak on day 2, while α1-inhibitor-3 manifested a marked initial decrease to 50% of the baseline level, followed by a tendency to increase again. For measurement of total RNA and specific mRNAs from the fiver, rats were sacrificed at different times during the experimental period. Total RNA peaked at 6 h, the level being approximately 60% higher than baseline value. Specific mRNA from the liver for α2-macroglobulin and α1-inhibitor-3 were quantified using laser densitometry on slot blots. The amounts measured during the experimental period agreed with the pattern of corresponding plasma protein levels. From barely detectable amounts at baseline, α2-macroglobulin mRNA peaked on day 1, and then declined. Levels of α1-inhibitor-3 mRNA manifested an initial increase at 3 h, but then declined and remained low until day 5 when there was a tendency towards an increase. It was concluded that the levels of plasma concentrations of α2-macroglobulin and α1-inhibitor-3 are mainly regulated at the protein synthesis level, and that long-term interleukin-1β release could not override the initial acute phase protein counteracting mechanism triggered

    Decuplet Baryon Magnetic Moments in the Chiral Quark Model

    Get PDF
    We present calculations of the decuplet baryon magnetic moments in the chiral quark model. As input we use parameters obtained in qualitatively accurate fits to the octet baryon magnetic moments studied previously. The values found for the magnetic moments of Δ++\Delta^{++} and Ω\Omega^{-} are in good agreement with experiments. We finally calculate the total quark spin polarizations of the decuplet baryons and find that they are considerably smaller than what is expected from the non-relativistic quark model

    The effects of matter density uncertainties on neutrino oscillations in the Earth

    Get PDF
    We compare three different methods to evaluate uncertainties in the Earth's matter density profile, which are relevant to long baseline experiments, such as neutrino factories.Comment: 3 pages, 1 figure. Talk given at the NuFact'02 Workshop, London, 1-6 July, 200

    Exact and Approximate Formulas for Neutrino Mixing and Oscillations with Non-Standard Interactions

    Full text link
    We present, both exactly and approximately, a complete set of mappings between the vacuum (or fundamental) leptonic mixing parameters and the effective ones in matter with non-standard neutrino interaction (NSI) effects included. Within the three-flavor neutrino framework and a constant matter density profile, a full set of sum rules is established, which enables us to reconstruct the moduli of the effective leptonic mixing matrix elements, in terms of the vacuum mixing parameters in order to reproduce the neutrino oscillation probabilities for future long-baseline experiments. Very compact, but quite accurate, approximate mappings are obtained based on series expansions in the neutrino mass hierarchy parameter \eta \equiv \Delta m^2_{21}/\Delta m^2_{31}, the vacuum leptonic mixing parameter s_{13} \equiv \sin\theta_{13}, and the NSI parameters \epsilon_{\alpha\beta}. A detailed numerical analysis about how the NSIs affect the smallest leptonic mixing angle \theta_{13}, the deviation of the leptonic mixing angle \theta_{23} from its maximal mixing value, and the transition probabilities useful for future experiments are performed using our analytical results.Comment: 29 pages, 8 figures, final version published in J. High Energy Phy

    Signatures from an extra-dimensional seesaw model

    Full text link
    We study the generation of small neutrino masses in an extra-dimensional model, where right-handed neutrinos are allowed to propagate in the extra dimension, while the Standard Model particles are confined to a brane. Motivated by the fact that extra-dimensional models are non-renormalizable, we truncate the Kaluza-Klein towers at a maximal extra-dimensional momentum. The structure of the bulk Majorana mass term, motivated by the Sherk-Schwarz mechanism, implies that the right-handed Kaluza-Klein neutrinos pair to form Dirac neutrinos, except for a number of unpaired Majorana neutrinos at the top of each tower. These heavy Majorana neutrinos are the only sources of lepton number breaking in the model, and similarly to the type-I seesaw mechanism, they naturally generate small masses for the left-handed neutrinos. The lower Kaluza-Klein modes mix with the light neutrinos, and the mixing effects are not suppressed with respect to the light-neutrino masses. Compared to conventional fermionic seesaw models, such mixing can be more significant. We study the signals of this model at the Large Hadron Collider, and find that the current low-energy bounds on the non-unitarity of the leptonic mixing matrix are strong enough to exclude an observation.Comment: 17 pages, 3 figures, REVTeX4. Final version published in Phys. Rev.
    corecore