35 research outputs found

    Anti-AIDS agents 89. Identification of DCX derivatives as anti-HIV and chemosensitizing dual function agents to overcome P-gp-mediated drug resistance for AIDS therapy

    Get PDF
    In this study, 19 dicamphanoyl-dihydropyranochromone (DCP) and dicamphanoyl-dihydropyranoxanthone (DCX) derivatives, previously discovered as novel anti-HIV agents, were evaluated for their potential to reverse multi-drug resistance (MDR) in a cancer cell line over-expressing P-glycoprotein (P-gp). Seven compounds fully reversed resistance to vincristine (VCR) at 4 μM, a 20-fold enhancement compared to the first generation chemosensitizer, verapamil (4 μM). The mechanism of action of DCPs and DCXs was also resolved, since the most active compounds (3, 4, and 7) significantly increased intracellular drug accumulation due, in part, to inhibiting the P-gp mediated drug efflux from cells. We conclude that DCPs (3 and 4) and DCXs (7, 11, and 17) can exhibit polypharmacologic behavior by acting as dual inhibitors of HIV replication and chemoresistance mediated by P-gp. As such, they may be useful in combination therapy to overcome P-gp-associated drug resistance for AIDS treatment

    Triethylated chromones with substituted naphthalenes as tubulin inhibitors

    Get PDF
    Previously synthesized 2-(benzo[]thiophene-3′-yl)-6,8,8-triethyldesmosdumotin B (, TEDB-TB) and 2-(naphth-1′-yl)-6,8,8-triethyldesmosdumotin B () showed potent activity against multiple human tumor cell lines, including a multidrug-resistant (MDR) subline, by targeting spindle formation and/or the microtubule network. Consequently, ester analogues of hydroxylated naphthyl substituted TEBDs (–) were prepared and evaluated for their effects on tumor cell proliferation and on tubulin assembly. Among all new compounds, compound , a 4′-acetoxynaphthalen-1′-yl derivative, displayed the most potent antiproliferative activity (IC 0.2–5.7 μM). Selected analogues were confirmed to be tubulin assembly inhibitors in cell-free and cell-based assays using MDR tumor cells. The new analogues partially inhibited colchicine binding to tubulin, suggesting their binding mode would be different from that of colchicine. This observation was supported by computational docking model analyses. Thus, the newly synthesized triethylated chromones with esterified naphthalene groups have good potential for development as a new class of mitotic inhibitors that target tubulin

    Antitumor Agents 295. E-Ring Hydroxylated Antofine and Cryptopleurine Analogues as Antiproliferative Agents: Design, Synthesis, and Mechanistic Studies

    Get PDF
    Various E-ring hydroxylated antofine and cryptopleurine analogs were designed, synthesized, and tested against five human cancer cell lines. Interesting structure-activity relationship (SAR) correlations were found among these new compounds. The most potent compound 13b was further tested against a series of non-small cell lung cancer (NSCLC) cell lines, in which it showed impressive antiproliferative activity. Mechanistic studies revealed that 13b is able to down-regulate HSP90 and β-catenin in A549 lung adenocarcinoma cells in a dose-dependent manner, suggesting a potential use for treating Hedgehog pathway-driven tumorigenesis

    Cytotoxic esterified diterpenoid alkaloid derivatives with increase selectivity against a drug-resistant cancer cell line

    Get PDF
    C-6 Esterifications of delpheline (1) were carried out to provide 20 new diterpenoid alkaloid derivatives (4–22, 24). Three natural alkaloids (1–3) and all synthesized compounds (4–25) were evaluated for cytotoxic activity against lung (A549), prostate (DU145), nasopharyngeal (KB), and vincristine-resistant nasopharyngeal (KB-VIN) cancer cell lines and interestingly, showed an improved drug resistance profile compared to paclitaxel. Particularly, 6-(4-fluoro-3-methylbenzoyl)delpheline (22) displayed 2.6-fold greater potency against KB-VIN cells compared with the parental non-drug resistant KB cells. 6-Acylation of 1 appears to be critical for producing cytotoxic activity in this alkaloid class and a means to provide promising new leads for further development into antitumor agents

    1-(3,4,5-Trimethoxyphenyl)ethane-1,2-diyl esters, a novel compound class with potent chemoreversal activity

    Get PDF
    1-(3,4,5-Trimethoxyphenyl)ethane-1,2-diyl esters, which share a fragment from (±)-3′-O-4′-O-bis(3,4-dimethoxycinnamoyl)-cis-khellactone (DMDCK) and 3′R,4′R-disubstituted-2′,2′-dimethyldihydropyrano[2,3-f]chromone (DSP), exhibited remarkable chemoreversal activity on multi-drug resistant human nasopharyngeal carcinoma (KB) when combined with three anti-cancer drugs, paclitaxel, vincristine and doxorubicin. Among 15 novel synthesized analogs, bis-trimethoxybenzoyl derivative 15 was the most active (340-fold more active than verapamil when used with vincristine) followed by two di-cinnamoyl derivatives, 10 and 11, and then di-cyclohexanecarbonyl derivative 9. All aliphatic chain derivatives, 3–5, showed no activity. Structure-activity relationship study indicated that a di-ester structure was critical to enhance the activity resulting from the maintenance of the spatial arrangement proposed by the pharmacophore based on the verapamil-binding site. Further mechanism of action study showed 15 inhibited mainly P-glycoprotein efflux pump function, while 13 exhibited an additional multidrug resistance-associated protein efflux pump function

    Antitumor Agents. 293. Nontoxic Dimethyl-4,4′-dimethoxy-5,6,5′,6′-dimethylenedioxybiphenyl-2,2′-dicarboxylate (DDB) Analogues Chemosensitize Multidrug-Resistant Cancer Cells to Clinical Anticancer Drugs

    Get PDF
    Novel dimethyl-4,4′-dimethoxy-5,6,5′,6′-dimethylenedioxybiphenyl-2,2′-dicarboxylate (DDB) analogs were designed and synthesized to improve their chemosensitizing action on KBvin (vincristine resistant nasopharyngeal carcinoma) cells, a multi-drug resistant cell line over-expressing P-glycoprotein (P-gp). Structure-activity relationship analysis showed that aromatic and bulky aliphatic side chains at the 2,2′-positions effectively and significantly sensitized P-gp overexpressing multidrug resistant (MDR) cells to anticancer drugs, such as paclitaxel (TAX), vincristine (VCR), and doxorubicin (DOX). DDB derivatives 16 and 23 showed 5–10 times more effective reversal ability than verapamil (VRP) for TAX and VCR. Analog 6 also exhibited five times greater chemosensitizing effect against DOX than VRP. Importantly, no cytotoxicity was observed by the active DDB analogs against both non-MDR and MDR cells, suggesting that DDB analogs serve as the novel lead compounds for the development of chemosensitizers to overcome MDR phenotype. The mechanism of action studies demonstrated that effective inhibition of P-glycoprotein by DDB analogs dramatically elevated cellular concentration of anticancer drugs

    Antitumor agents 290. Design, synthesis, and biological evaluation of new LNCaP and PC-3 cytotoxic curcumin analogs conjugated with anti-androgens

    Get PDF
    In our continuing study of curcumin analogs as potential anti-prostate cancer drug candidates, 15 new curcumin analogs were designed, synthesized and evaluated for cytotoxicity against two human prostate cancer cell lines, androgen-dependent LNCaP and androgen-independent PC-3. Twelve analogs (5-12, 15, 16, 19, and 20) are conjugates of curcumin (1) or methyl curcumin (2) with a flutamide- or bicalutamide-like moiety. Two compounds (22 and 23) are C4-mono- and difluoro-substituted analogs of dimethyl curcumin (DMC, 21). Among the newly synthesized conjugates compound 15, a conjugate of 2 with a partial bicalutamide moiety, was more potent than bicalutamide alone and essentially equipotent with 1 and 2 against both prostate tumor cell lines with IC50 values of 41.8 μM (for LNCaP) and 39.1 μM (for PC-3). A cell morphology study revealed that the cytotoxicity of curcumin analogs or curcumin-antiandrogen conjugates detected from both prostate cancer cell lines might be due to the suppression of pseudopodia formation. A molecular intrinsic fluorescence experiment showed that 1 accumulated mainly in the nuclei, while conjugate 6 was distributed in the cytosol. At the tested conditions, antiandrogens suppressed pseudopodia formation in PC-3 cells, but not in LNCaP cells. The evidence suggests that distinguishable target proteins are involved, resulting in the different outcomes toward pseudopodia suppression

    Synthesis, biological evaluation, and physicochemical property assessment of 4-substituted 2-phenylaminoquinazolines as Mer tyrosine kinase inhibitors

    Get PDF
    Current results identified 4-substituted 2-phenylaminoquinazoline compounds as novel Mer tyrosine kinase (Mer TK) inhibitors with a new scaffold. Twenty-one 2,4-disubstituted quinazolines (series 4-7) were designed, synthesized, and evaluated against Mer TK and a panel of human tumor cell lines aimed at exploring new Mer TK inhibitors as novel potential antitumor agents. A new lead, 4b, was discovered with a good balance between high potency (IC50 0.68μM) in the Mer TK assay and antiproliferative activity against MV4-11 (GI50 8.54μM), as well as other human tumor cell lines (GI50<20μM), and a desirable druglike property profile with low logP value (2.54) and high aqueous solubility (95.6μg/mL). Molecular modeling elucidated an expected binding mode of 4b with Mer TK and necessary interactions between them, thus supporting the hypothesis that Mer TK might be a biologic target of this kind of new active compound

    Synthesis and biological evaluation of N-alkyl-N-(4-methoxyphenyl)pyridin-2-amines as a new class of tubulin polymerization inhibitors

    Get PDF
    Based on our prior antitumor hits, 32 novel N-alkyl-N-substituted phenylpyridin-2-amine derivatives were designed, synthesized and evaluated for cytotoxic activity against A549, KB, KBVIN, and DU145 human tumor cell lines (HTCL). Subsequently, three new leads (6a, 7g, and 8c) with submicromolar GI50 values of 0.19 to 0.41 μM in the cellular assays were discovered, and these compounds also significantly inhibited tubulin assembly (IC50 1.4–1.7 μM) and competitively inhibited colchicine binding to tubulin with effects similar to those of the clinical candidate CA-4 in the same assays. These promising results indicate that these tertiary diarylamine derivatives represent a novel class of tubulin polymerization inhibitors targeting the colchicine binding site and showing significant anti-proliferative activity

    N-Aryl-6-methoxy-1,2,3,4-tetrahydroquinolines: A novel class of antitumor agents targeting the colchicine site on tubulin

    Get PDF
    Structural optimizations of the prior lead 1a led to the discovery of a series of N-aryl-6-methoxy-1,2,3,4-tetrahydroquinoline derivatives as a novel class of tubulin polymerization inhibitors targeted at the colchicine binding site. The most active compound 6d showed extremely high cytotoxicity against a human tumor cell line panel (A549, KB, KBvin, and DU145) with GI50 values ranging from 1.5 to 1.7 nM, significantly more potent than paclitaxel, especially against the drug-resistant KBvin cell line, in the same assays. Analogues 5f, 6b, 6c, and 6e were also quite potent, with a GI50 range of 0.011–0.19 μM. In further studies, active compounds 6b–6e and 5f significantly inhibited tubulin assembly, with IC50 values of 0.92 to 1.0 μM and strongly inhibited colchicine binding to tubulin, with inhibition rates of 75–99% (at 5 μM), comparable with or more potent than combretastatin A-4 (IC50 0.96 μM). Current studies included design, synthesis, and biological evaluations of 24 new compounds (series 3–6). Related SAR analysis, molecular modeling, and evaluation of essential drug-like properties, i.e. water solubility, log P, and in vitro metabolic stability, were also performed
    corecore