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Abstract

Current results identified 4-substituted 2-phenylaminoquinazoline compounds as novel Mer 

tyrosine kinase (Mer TK) inhibitors with a new scaffold. Twenty-one 2,4-disubstituted 

quinazolines (series 4–7) were designed, synthesized, and evaluated against Mer TK and a panel 

of human tumor cell lines aimed at exploring new Mer TK inhibitors as novel potential antitumor 

agents. A new lead, 4b, was discovered with a good balance between high potency (IC50 0.68 µM) 

in the Mer TK assay and antiproliferative activity against MV4-11 (GI50 8.54 µM), as well as 

other human tumor cell lines (GI50 < 20 µM), and a desirable druglike property profile with low 

log P value (2.54) and high aqueous solubility (95.6 µg/mL). Molecular modeling elucidated an 

expected binding mode of 4b with Mer TK and necessary interactions between them, thus 

supporting the hypothesis that Mer TK might be a biologic target of this kind of new active 

compound.
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 Introduction

Mer tyrosine kinase (Mer TK) is a member of the TAM (Tyro3/Axl/Mer) kinase family and 

has been identified as a specific therapeutic target for acute lymphoblastic leukemia (ALL),1 

the most common malignant cancer in children. Despite a significant improvement in ALL 

treatment in terms of survival (>80%) over the past 40 years,2 novel targeted therapies for 

pediatric ALL are urgently needed, because current standard therapy treatments induce 

short- and long-term toxicities,3,4 plus development of resistance and relapse. The Mer TK 

plays a critical role in the pathogenesis of ALL through initiation of anti-apoptotic signaling 

via increased phosphorylation of Akt and Erk, and subsequent prevention of cell apoptosis,5 

and is ectopically expressed at high-levels in pediatric T- and B-cell acute lymphoblastic 

leukemias in vitro and in vivo in contrast to normal lymphocytes.6 The overexpression of 

Mer TK in T-and B-cells has provided compelling evidence that inhibition of Mer reduces 

the survival of leukemic cells, makes cells more susceptible to death, and significantly 

delays the onset of disease in a xenograft mouse model of leukemia.7 Additionally, over- or 

ectopic-expression of Mer TK is also associated with a wide spectrum of human cancers and 

other diseases, including thrombosis, autoimmune disease, and retinitis pigmentosa.8 

Therefore, the Mer receptor tyrosine kinase is a very promising selective therapeutic target 

for new anticancer drugs, not only for pediatric ALL, but possibly for other leukemias and 

adult solid tumors.9 As a new biological target, the crystal structure of Mer TK was first 

identified by a complex with C-52, a weak Mer inhibitor.10 Subsequently, small molecular 

Mer kinase inhibitors, including UNC569,11 UNC2250,12 and UNC288113 (Figure 1), with 

subnanomolar inhibitory potency were discovered and crystal structures of Mer TK 

complexed with these new ligands have also reported. These results should greatly assist the 

exploration of novel Mer tyrosine kinase inhibitors for treatment of ALL and other cancers.

In our prior study, high throughput screening of 72 kinases led to the initial discovery of Mer 

TK inhibitors leads 1a–c with simple and similar scaffolds (Figure 2). 5-Chloro-N-4-

cyanophenyl-2,4-dinitro aniline (1a) and two analogues 1b and 1c showed selective 

inhibition against Mer tyrosine kinase (IC50 2.2–3.0 µM) without activity against Tyro3 and 

Axl kinases (IC50 > 30 µM) in the TAM (Tyro3/Axl/Mer) kinase family.14 Meanwhile, the 

three compounds also clearly exhibited anticancer activity with low micromolar GI50 values 

ranging from 0.33 to 4.79 µM in a human tumor cell line (HTCL) panel, including A549 

(human lung cancer), KB (nasopharyngeal carcinoma), KB-vin (vincristine- resistant KB 

subline), DU145 (prostate cancer), and K562 (human chronic myelogenous leukemia cells). 

With this starting point, some structural optimizations were conducted to explore novel Mer 
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kinase inhibitors with a new scaffold as anticancer agents. Based on a structure analysis of 

several known Mer TK inhibitors as shown in Figure 1, we observed that the pyrimidine ring 

is a common structural core moiety and appropriate substituents are positioned in a binding 

orientation at the Mer TK binding site. To increase the probability of generating successful 

advanced leads, the phenyl or pyridine ring (A-ring) of the initial leads 1a–c was replaced 

with other bioisosteric aromatic rings in our following lead modifications. After several 

attempts, the quinazoline ring system was found to be a better structural core moiety, leading 

to a series of 2-substituted 4-phenylamino-quinazoline compounds 2 (Figure 2) with 

extremely high antitumor potency (GI50 < 10 nM) in several cellular assays as well as in 

vivo.15,16,17 However, the series 2 compounds did not show inhibitory activity in Mer TK 

assays (IC50 >30 µM); thus, their antitumor target is not the Mer TK. However, when the 

phenylamino moiety (B-ring) was positioned at the 2-position of the quinazoline ring (A 

ring), the resulting 2-phenylaminoquinazoline compounds exhibited obvious inhibitory 

potency against Mer TK with low micromolar IC50 values. Therefore, several series of 4-

substituted 2-phenylaminoquinazoline compounds (4–7 series) were designed, synthesized, 

and evaluated in Mer tyrosine kinase and human tumor cell line (HTCL) assays aimed at 

exploring the new type of Mer TK inhibitor leads. As shown in Figure 2, our structural 

modifications were focused on the three substituents, R1 at the 4-position on the quinazoline 

ring (A-ring), R2 on the phenyl ring (B-ring), and R3 on the nitrogen (N) linker between the 

A- and B-rings, while a phenyl ring was maintained at the 2-position of the quinazoline. 

Herein, we reported new series of 4-substituted 2-arylaminoquinazolines 4–7, including 

synthesis, biological activity in Mer TK and cellular assays, assessment of essential 

physicochemical properties associated with ADMET profiles, and structure-acitivity 

relationship (SAR) discussion as well as molecular modeling demonstrated at targeting Mer 

tyrosine kinase.

 Chemistry

A facilitated synthetic route to target compounds 4–7 is illustrated in Scheme 1. 

Commercially available 2,4-dichloroquinazoline was coupled with various amines at room 

temperature in THF for 1 h to preferentially produce 4-alkylamino-2-chloroquinazolines 3a–
f in 60–95% yields, due to the higher reactivity of the 4-chloro compared with the 2-chloro 

position on the quinazoline ring.18 Next, 4-methoxy-N-substituted-anilines were reacted 

with the 2-chloro on quinazolines 3b–f in the presence of a stronger base t-BuOK and 

catalyst Pd(OAc)2/X-phos in a mixed solvent of t-BuOH and toluene under microwave 

irritation at 130 °C to obtain the corresponding 4-alkylamino-2-(4-methoxyphenyl)amino 

quinazolines 4b–f, respectively, in 33–54% yields. Alternatively, N-methyl-4-

methoxyaniline or other para-substituted anilines were coupled with 3a–f in EtOH under 

microwave irritation at 150 °C to yield target compounds 5a–e, 4a, 6a–e, and 7a–f, 
respectively. All target compounds were identified by NMR and MS data.

 Results and discussion

All 4-substituted 2-phenylaminoquinazoline compounds (series 4–7) were first evaluated for 

inhibition of Mer TK in a high throughput screening platform with staurosporine as a 

positive control.11 The first two series of 4-substituted 2-(para-

Wang et al. Page 3

Bioorg Med Chem. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



methoxyphenyl)aminoquinazolines 4 (R3 = H) and 5 (R3 = Me) were designed to investigate 

effects of various alkyl groups (R1) at the 4-position of the quinazoline, and their biological 

data are shown in Table 1. Except 5e and 5f (>30 µM), most series 4 and 5 compounds 

exhibited obvious inhibitory activity in the Mer TK assay with low micromolar IC50 values 

of 0.68 to 10.2 µM. These results indicated that the 2-phenylaminoquinazoline is likely a 

fundamental pharmacophore of this new class of Mer-TK inhibitors. However, 

comparatively, series 4 compounds were generally as or more potent than corresponding 

series 5 compounds in the same assay (see 4a vs 5a, 4b vs 5b, 4d vs 5d, and 4e vs 5e), 

suggesting that the methyl substituent (R3) on the N-linker between the two aryl rings (A 

and B rings) was not essential for enhanced inhibitory activity against Mer TK. However, the 

4-substituent (R1) on the quinazoline ring was modifiable based on the activity shown with a 

variety of 4-alkylamino groups (R1) from linear chains of different lengths (b–d) or small 

rings from three- to six-membered (f, a, e, g). The 4-(3-hydroxypropyl)amino linear chain 

(R1 = NH(CH2)3OH) resulted in the most potent compound 4b with an IC50 value of 0.68 

µM in the Mer TK assay, but the presence of a six-membered ring in the R1 substituent (5e 
and 5g) led to decreased or abolished potency. Subsequently, the impact of the substituent 

(R2) at the para-position of the phenyl B-ring on biological activity was explored by series 6 
and 7, in which R3 on the N-linker is hydrogen (H). Series 6, with the same R1 substituent 

(4-cyclopentylamino) found in 4a, contained various para-R2 substituents. Compared with 

4a (R2 = OMe, IC50 1.08 µM), 6d with a para-hydroxy (R2 = OH) substituent showed a 

similar low IC50 value of 1.24 µM. Three other series 6 compounds [6b (R2 = NH2), 6c (R2 

= F) and 6e (R2 = COOH)] displayed IC50 values from 2.96 to 7.27 µM, three- to seven-fold 

less potent than 4a, whereas 6a (R2 = CN) was inactive (IC50 >30 µM) in the Mer TK assay. 

Three of the series 7 compounds (7a–7c) contain the same linear chain R1 group (4-

NH(CH2)3OH) found in 4b. Although less potent than 4b, compound 7a (R2 = CN) still 

exhibited significant potency (IC50 = 1.72 µM), especially, as compared with inactive 6a. 

Meanwhile, 7b (R2 = NH2) and 7c (R2 = F) were inactive (IC50 >30 µM), in contrast to the 

corresponding 6b and 6c in the same assay. Moreover, 7d (R1 = 4-propylamino, R2 = F) was 

less potent (IC50 = 7.84 µM) than the corresponding 4c and 5c (R1 = 4-propylamino, R2 = 

OMe, R3 = H or Me). Consistent with the results of 5e and 5g, compounds 7e and 7f with a 

morpholine in the R1 position were inactive (IC50 >30 µM) in the Mer TK assay. Altogether, 

the current results indicated that both R1 and R2 substituents could affect the potency against 

Mer TK, even though clear relationships were not always observed. These results 

demonstrated that a para-methoxy group (R2 = OMe) on the phenyl B-ring was generally 

more favorable than several other R2 substituents (particularly, COOH, NH2, F) for Mer TK 

inhibitory potency. Regardless, a R2 group with strong electronegativity (e.g., F) or electron-

withdrawing effect (COOH, CN), as either H-bond acceptor or donor, might interfere with 

the interactions between the small molecule and Mer TK.

Subsequently, compounds (series 4–7) active in Mer TK assay, except 5e, 5g, 7e, and 7f 
(IC50 > 30 µM), were further evaluated in cellular assays against a human tumor cell line 

(HTCL) panel, including A549, KB, KB-vin, and DU145 cell lines, to determine their 

antiproliferative activity. Paclitaxel was used as the positive reference. As shown in Tables 1 

and 2, most of the new compounds exhibited moderate potency with GI50 values less than 20 

µM. Notably, similar potencies were generally observed against both KB and drug-resistant 
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KB-vin cell lines, indicating that these compounds are not substrates of Pgp, a membrane 

efflux-pump protein. Among them, 4c and 7d showed the highest overall antiproliferative 

potency (GI50 3.53–5.09 µM and 2.5–4.3 µM respectively). Interestingly, compound 7a (R1 

= −NH(CH2)3OH, R2 = CN) showed selective potency against A549 (GI50 3.00 µM) and 

drug-resistant KB-vin (GI50 4.31 µM) cell growth, five- to eight-fold more potent than 

against DU145 (GI50 18.7 µM) and KB cell lines (GI50 23.7 µM). This result suggested that 

the R2-group on the B-ring might affect the selectivity in different cell lines. With the 

criteria of IC50 < 10 µM and GI50 < 30 µM in the above cellular assays, 13 active 

compounds were chosen and further tested against the MV4-11 (acute leukemia) cell line, 

because the Mer kinase is especially overexpressed in T- and B-cell acute lymphoblastic 

leukemia cells. Except 5b, most of the tested compounds exhibited low micromolar GI50 

values against this cell line, with two- to four-fold higher potency than against the prior four 

tested cell lines. The high potency and selectivity in MV4-11 cells are supportive for this 

compound type as new antitumor agents targeting Mer TK.

To demonstrate that Mer TK could be a target of the active new compounds, we performed 

molecular modeling studies with Discovery Studio 3.0 (Accelrys) docking into the ligand-

specificity active site of Mer TK mapped by several co-crystal structures of Mer with 

ligands.10 The crystal structure of Mer kinase in complex with ligand UNC569 (PDB code: 

3TCP)11 from the RCSB Protein Data Bank (http://www.rcsb.org/pdb) was used to dock the 

most active compound 4b and predict a potential binding mode for 4-alkylamino-2-

arylaminoquinazolines. As shown in Figure 3A, the pyrazolopyrimidine ring of original 

ligand UNC569 (cyan stick) was located near the “gate” of the protein and sustained the 

orientation and overall binding conformation of its substituents at the Mer TK binding site. 

Original ligand UNC569 showed four hydrogen bonds with Mer kinase: two within the 

hinge region produced by the nitrogen on the pyrimidine ring with the NH of residue 

Met674 as well as the NH of the propylamino side chain with the carbonyl of residue 

Pro672, and two additional hydrogen bonds from the primary amino group on the 

methylcyclohexyl moiety with the carbonyls of Arg727 and Asn728, respectively. As 

expected, representive compound 4b displayed a predicted binding model with Mer TK 

similar to that of UNC569 as shown in Figure 3. Compound 4b (orange stick) superimposed 

well with UNC569, having a similar binding orientation and four hydrogen bonds with the 

Mer kinase site. Two H-bonds were formed between the key amino acid Met674 with the 

nitrogen on the quinazoline ring and the NH linker of 4b, respectively, supporting the 

conclusion that a NH linker is favorable for higher potency compared with a methylated N-

linker (comparison of series 4 and 5). Two additional H-bonds were produced between the 

OH in the 4-substituent (R1) of 4b with the backbone carbonyl and amino groups, 

respectively, of Asp678. In addition, a π-π interaction was observed between the phenyl ring 

of Phe673 and the quinazoline rings in 4b, which also superimposed over the 

pyrazolopyrimidine rings of UNC569. The calculated binding free energy of 4b was −18.25 

kcal/mol. Therefore, the docking results of 4b supported the possibility that compounds of 

this new type could act as Mer tyrosine kinase inhibitors. Furthermore, compounds 7a–7e, 

either active or inactive against Mer TK, were also docked to the Mer TK binding site in the 

same manner and superimposed with 4b (in orange). As shown in Figure 3B, 7a–7e (in 

gray) have the same binding orientation as that of 4b and similar interactions around key 
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amino acids Phe673, Met674, and Arg727 (or Asn728). Notably, the π-π interaction between 

the phenyl ring (B-ring) at the 2-position of the quinazoline with Phe673 was also observed 

in this series of compounds, thus demonstrating that the 2-phenylamino moiety is a 

necessary pharmacophore for Mer TK inibition. Meanwhile, different binding conformations 

of the B-ring moiety in this compound series are also observed in Figure 3B. Thus, 

molecular potency related with the B-ring conformations could be affected by flexibility of 

the NH-linker and different para-substituents (R2) on the B-ring.

To increase drug discovery success, the druglike properties of active compounds mtust also 

be considered as a prominent component, in addition to potency, during the early stages of 

lead optimization. Consequently, nine promising compounds, based on the Mer TK (IC50 <5 

µM) and MV4-11 cellular (GI50 <10 µM) assay results, were further assessed for essential 

instrinsic physicochemical properties of aqueous solubility and lipophilicity that are 

associated with ADME drug properties, potency, and adverse safety. Aqueous solubility and 

log P values were measured by HPLC methods19 at pH 7.4, similar to the physiological 

condition in plasma, and the data are listed in Tables 1 and 2. The experimental log P values 

of 4b, 4d, 6d, and 7a fell within a desirable range of 2.54–3.95 (<4) and the remaining 

compounds 4a, 5a, 4c, 5c, and 6c possessed higher lipophilicity (log P > 5). Notably, 4b, the 

most potent compound against Mer TK (IC50 0.68 µM), displayed a desirable log P value of 

2.54 and relatively high solubility of 95.6 µg/mL, signifying a good balance that should 

contribute favorably to better ADME profiles. With the same R1 substituent as 4b, 

compound 7a also showed a low log P value (2.84) and moderate aqueous solubility (7.52 

µg/mL), suggesting that the polar 4-(3-hydroxy)propylamino substituent (R1) in 4b and 7a 
led to lower molecular lipophilicity. Concomitant with increased molecular lipophilicity, 4d 
(log P 3.21) and 6d (log P 3.95) displayed decreased aqueous solubilities of 6.61 µg/mL and 

3.10 µg/mL, respectively. Based on data comparison of 4a vs 5a and 4c vs 5c in Table 1, the 

presence of a methyl group (R3) might lead to a decrease in the molecular aqueous 

solubility. On the other hand, the aqueous solubility results for 4a (R2 = OMe), 6c (R2 = F), 

and 6d (R2 = OH) revealed the following favorable order: OMe > OH > F.

 Conclusion

In the current study, twenty-one 4-substituted 2-phenylaminoquinazolines (series 4–7) were 

designed, synthesized, and evaluated against Mer TK and a human tumor cell line panel. 

Among them, 13 compounds showed high inhibitory potency against Mer TK with low 

micromolar IC50 values ranging from 0.68 to 4.17 µM. Most of these promising compounds 

also exhibited significant antiproliferative activity against the MV4-11 cell line (IC50 < 10 

µM), as well as a broad HTCL panel with moderate IC50 values (< 20 µM). Further 

assessment of physicochemical properties in vitro identified three new lead compounds 4a, 
4b, and 7a with a favorable balance between potency in Mer TK and cellular assays and 

druglike properties of aqueous solubility and lipophilicity. In particular, compound 4b had 

an IC50 of 0.68 µM against Mer TK, moderate GI50 values ranging from 8 to 20 µM in 

cellular assays, a desirable log P value of 2.54, and high aqueous solubility (95.6 µg/mL). 

Molecular modeling studies predicted a reasonable binding mode of 4b with Mer TK similar 

to that of the known Mer kinase inhibitor UNC569, supporting our hypothesis that Mer TK 
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might be a biologic target of 4b. Current results demonstrated that (1) the phenylamino 

moiety at the 2-position on the quinazoline ring (A-ring) is necessary for inhibitory potency 

against Mer TK; (2) the R1 at the 4-position on the quinazoline ring is modifiable and its H-

bonds formed with Asp678, Arg 727, or Asn278 on the binding site of Mer TK are critical to 

enhance potency in both Mer TK and cellular assays as well as improve drug-like properties; 

(3) the para-R2 on the phenyl B-ring greatly affects molecular potency, and a methoxy group 

(OMe) is better than other groups such as OH, NH2, COOH, F; (4) the NH linker between 

two aryl rings is favorable to enhance molecular potency compared with the methyl group 

(R3) on the N-linker that might benefit the balance between molcular lipophilicity and 

aqueous solubility. Therefore, the current studies discovered a series of new Mer TK 

inhibitors with a 4-substituted 2-phenylaminoquinazoline scaffold and provided helpful 

directions for further lead optimization aimed at the discovery and development of highly 

potent and selective Mer inhibitors as novel anticancer agents.

 Experimental Section

 Chemistry

Melting points were measured on a SGW X-4 Micro-Melting point detector without 

correction. The proton nuclear magnetic resonance (1H NMR) spectra were measured on a 

JNM-ECA-400 (400 MHz) spectrometer using tetramethylsilane (TMS) as internal standard. 

The solvent used was DMSO unless indicated. Mass spectra (MS) were measured on an 

API-150EX mass spectrometer with electrospray ionization connected with an Agilent 1100 

system. The microwave reactions were performed on a microwave reactor from Biotage, Inc. 

Thin-layer chromatography (TLC) was performed on silica gel GF254 plates. Silica gel 

GF254 and H (200–300 mesh) from Qingdao Haiyang Chemical Company was used for 

TLC and preparative TLC, respectively. Medium-pressure column chromatography was 

performed using a CombiFlash companion system from ISCO, Inc. to purify target 

compounds. All chemicals were obtained from Beijing Chemical Works or Sigma-Aldrich, 

Inc. The purity of target compounds was measured with HPLC methods and reached >95% 

for biological assays. The HPLC analyses were performed by using an Agilent 1200 HPLC 

system with a UV detector and an Agilent Eclipse XDB-C18 column (150 mm × 4.6 mm, 5 

µm) under the conditions of elution with 35–70% acetonitrile (CAN)) in water, flow rate 0.8 

mL/min, UV detection at 254 nm, and injection volume of 15 L.

 General preparation of 2-chloro-4-(N-substituted)aminoquinazolines 3a–f

A mixture of 2,4-dichloroquinazoline (1.0 equiv) and an amine (2.0 equiv) in THF (ca. 10 

mL) was stirred at room temperature for 0.5–3 h monitored by TLC until the reaction 

finished. After solvent was removed under reduced pressure, solid crude product was 

washed with water, dried, and purified by flash column chromatography (gradient eluention: 

EtOAc/petroleum ether, 0–50%) to give corresponding compounds 3a–f in yields of 60–

95%. The structures of intermediame 3a and 3b as representive compounds were identified 

with MS and 1H NMR spectra as indicated below.
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 2-Chloro-4-(N-cyclopentyl)aminoquinazoline (3a)

Starting with 2,4-dichloro quinazoline (2 g, 10 mmol) and cyclopentanamine (1.7 g, 20 

mmol) to produce 2.3 g of 3a in 93 % yield, white solid, mp 108~110 °C; 1H NMR δ ppm 

1.61 (4H, m, CH2×2), 1.75 (2H, m, CH2), 2.03 (2H, m, CH2), 4.50 (1H, f, J = 7.2 Hz, CH), 

7.53 (1H, td, J = 8.4 and 1.2 Hz, H-6), 7.60 (1H, d, J = 8.4 Hz, ArH-5), 7.79 (1H, td, J = 8.4 

and 1.2 Hz, ArH-7), 8.37 (1H, d, J = 8.4 Hz, ArH-8), 8.46 (1H, d, J = 7.2 Hz, NH); MS m/z 
(%) 248 (M + 1, 20), 250 (M + 3, 8), 144 (100).

 2-Chloro-4-((3-hydroxypropyl)amino)quinazoline (3b)

Starting with 2,4-dichloro quinazoline (2 g, 10 mmol) and 3-aminopropan-1-ol (1.5 g, 20 

mmol) to produce 2.2 g of 3b in 92 % yield, white solid, mp 93~95 °C; 1H NMR δ ppm 1.81 

(2H, f, J = 7.2 Hz, CH2), 3.52 and 3.57 (each 2H, m, CH2), 4.58 (1H, t, J = 4.8 Hz, OH,), 

7.53 (1H, t, J = 8.0 Hz, H-6), 7.61 (1H, d, J = 8.0 Hz, ArH-5), 7.79 (1H, t, J = 8.0 Hz, 

ArH-7), 8.26 (1H, d, J = 8.0 Hz, ArH-8), 8.73 (1H, br, NH); MS m/z (%) 238 (M + 1, 40), 

240 (M + 3, 13), 144 (100).

 General procedure for synthesis of 4b–f

A mixture of a 4-substituted 2-chloroquinazoline (3b–f) (1.0 equiv) and 4-methoxyaniline 

(1.05–1.5 equiv) in the presence of t-BuOK (2 equiv), X-Phos (0.04 equiv), Pd(OAc)2 (0.05 

equiv), and Celite (300 mg) in t-BuOH (0.5 mL) and toluene (2.5 mL) was heated at 130 C 

for 15 min under microwave irradiation in a closed vial. EtOAc (5 mL) was then added to 

the mixture, precipitated solid was filtered off, and solvent was removed from the filtrate 

under reduced pressure to obtain crude products. Purification by flash column 

chromatography (gradient methanol/DCM ether, 0–5%) provided corresponding pure target 

compounds.

 4-(3-Hydroxypropyl)amino-2-(4-methoxyphenyl)aminoquinazoline (4b)

Starting with 2-chloro- 4-(3-hydroxypropyl)aminoquinazoline (3b) (105 mg, 0.44 mmol) 

and 4-methoxyaniline (65 mg, 0.52 mmol) to produce 48 mg of 4b in 34% yield, white 

solid, mp 114~116 °C; 1H NMR (CDCl3) δ ppm 1.88 (2H, f, J = 5.6 Hz, CH2), 3.73 (2H, t, J 
= 5.6 Hz, NCH2), 3.79 (2H, t, J = 5.6 Hz, OCH2) 3.80 (3H, s, OCH3), 6.23 (1H, br, OH), 

6.88 (2H, d, J = 8.8 Hz, ArH-3′, 5′), 7.14 (1H, td, J = 8.0, ArH-6), 7.53~7.58 (3H, m, ArH-5, 

7, 8), 7.59 (2H, d, J = 8.8 Hz, ArH-2′, 6′); MS m/z (%) 325 (M + 1, 100).

 2-(4-Methoxyphenyl)amino-4-propylaminoquinazoline (4c)

Starting with 2-chloro-4-(N-propylamino) quinazoline (3c) (270 mg, 1.22 mmol) and 4-

methoxyaniline (225 mg, 1.83 mmol) to produce 204 mg of 4c in 54% yield, yellow solid, 

mp 220~222 °C; 1H NMR δ ppm 0.92 (3H, t, J = 7.2 Hz, CH3), 1.66 (2H, six, J = 7.2 Hz, 

CH2), 3.49 (2H, m, CH2,), 3.78 (3H, s, OCH3), 7.01 (2H, d, J = 8.8 Hz, ArH-3′, 5′), 7.44 

(1H, t, J = 8.4 Hz, ArH-6), 7.48 (2H, d, J = 8.8 Hz, ArH-2′, 6′), 7.56 (1H, d, J = 8.4 Hz, 

ArH-5), 7.81(1H, t, J = 8.4 Hz, ArH-7), 8.38 (1H, d, J = 8.4 Hz, ArH-8), 9.85 (1H, br, NH), 

10.32 (1H, s, NH); MS m/z (%) 309 (M + 1, 100).
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 2-(4-Methoxyphenyl)amino-4-methylaminoquinazoline (4d)

Starting with 2-chloro-4-(N-metnyl) aminoquinazoline (3d) (150 mg, 0.78 mmol) and 4-

methoxyaniline (120 mg, 0.97 mmol) to produce 73 mg of 4d in 33% yield, faint yellow 

solid, mp 142~144 °C; 1H NMR δ ppm 3.02 (3H, s, NCH3), 3.72 (3H, s, OCH3), 6.85 (2H, 

d, J = 8.8 Hz, ArH-3′, 5′), 7.13 (1H, t, J = 8.0 Hz, ArH-6), 7.35 (1H, d, J = 8.0 Hz, ArH-5), 

7.55 (1H, t, J = 8.0 Hz, ArH-7), 7.83 (2H, d, J = 8.8 Hz, ArH-2′, 6′), 7.98 (1H, d, J = 8.0 Hz, 

ArH-8), 8.07 (1H, br, NH), 8.87 (1H, s, NH); MS m/z (%) 281 (M + 1, 100).

 2-(4-Methoxyphenyl)amino-4-(N-morpholino)quinazoline (4e)

Starting with 4-(2-chloroquinazolin-4-yl)morpholine (3e) (130 mg, 0.52 mmol) and 4-

methoxyaniline (95 mg, 0.77 mmol) to produce 68 mg of 4e in 39% yield, white solid, mp 

141~143 °C; 1H NMR δ ppm 3.63 (4H, t, J = 4.4 Hz, 2 × CH2), 3.73 (3H, s, OCH3), 3.81 

(4H, t, J = 4.4 Hz, 2 × CH2), 6.88 (2H, d, J = 8.8 Hz, ArH-3′, 5′), 7.18 (1H, td, J = 8.0 and 

1.2 Hz, ArH-6), 7.49 (1H, dd, J = 8.0 and 1.2 Hz, ArH-5), 7.62 (1H, td, J = 8.0 and 1.2 Hz, 

ArH-7), 7.78 (2H, d, J = 8.8 Hz, ArH-2′, 6′), 7.78 (1H, d, J = 8.0 Hz, ArH-8), 9.15 (1H, s, 

NH); MS m/z (%) 337 (M + 1, 100).

 4-(N-cyclopropyl)amino-2-(4-methoxyphenyl)aminoquinazoline (4f)

Starting with 2-chloro-4-(N-cyclopropyl)aminoquinazoline (3f) (215 mg, 0.98 mmol) and 4-

methoxy aniline (184 mg, 1.49 mmol) to produce 103 mg of 4f in 33% yield, faint yellow 

solid, mp 192~194 °C; 1H NMR (CDCl3) δ ppm 0.94–0.99 (4H, m, CH2×2), 1.64 (1H, m, 

CH), 3.82 (3H, s, OCH3), 6.87 (2H, d, J = 8.8 Hz, ArH-3′, 5′), 7.21 (1H, t, J = 8.0 Hz, 

ArH-6), 7.42 (1H, d, J = 8.0 Hz, ArH-5), 7.56 (1H, t, J = 8.0 Hz, ArH-7), 7.65 (2H, d, J = 

8.8 Hz, ArH-2′, 6′), 8.02 (1H, d, J = 8.0 Hz, ArH-8), 10.27 (1H, s, NH), 13.26 (1H, s, NH); 

MS m/z (%) 307 (M + 1, 100).

 Coupling reaction procedure for preparations of 4a, 5, 6, and 7 series

A mixture of a 4-substituted 2-chloroquinazoline (3) (1.0 equiv) and a para-substituted 

aniline or para-substituted N-methylaniline (1.05–1.5 equiv) in EtOH (2.5 mL) in a closed 

vial was heated under microwave irradiation at 150 °C for 15–25 min monitored by TLC 

until the reaction finished. The mixture was poured into water, and pH adjusted to 10 with 

NaHCO3. The solid crude product was collected, washed, and purified by flash column 

chromatography (gradient elution: MeOH/CH2Cl2, 0–5%) to give corresponding target 

compound.

 4-(N-Cyclopentyl)amino-2-(4-methoxyphenyl)aminoquinazoline (4a)

Starting with 2-chloro-4-(N-cyclopentyl)aminoquinazoline (3a) (340 mg, 1.37 mmol) and 4-

methoxyaniline (205 mg, 1.65 mmol) to produce 303 mg of 4a in 66% yield, faint yellow 

solid, mp 211~213 °C; 1H NMR δ ppm 1.58 (2H, m, CH2), 1.77 (4H, m, CH2×2), 1.99 (2H, 

m, CH2), 3.78 (3H, s, OCH3), 4.50 (1H, br, s, CH), 7.01 (2H, d, J = 8.4 Hz, ArH-3′, 5′), 7.44 

(1H, t, J = 8.0 Hz, ArH-6), 7.48 (2H, d, J = 8.4 Hz, ArH-2′, 6′), 7.54 (1H, d, J = 8.0 Hz, 

ArH-5), 7.81(H, t, J = 8.0 Hz, ArH-7), 8.51 (1H, d, J = 8.0 Hz, ArH-8), 9.39 (1H, br, NH), 

10.34 (1H, s, NH); MS m/z (%) 335 (M + 1, 100).
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 4-(N-Cyclopentyl)amino-2-(N-(4-methoxyphenyl)-N-methyl)aminoquinazoline (5a)

Starting with 3a (260 mg, 0.95 mmol) and 4-methoxy-N-methylaniline (160 mg, 1.16 mmol) 

to produce 270 mg of 5a in 82% yield, white solid, mp 216–218 °C; 1H NMR δ ppm 1.53 

(2H, m, CH2), 1.72 (4H, m, CH2 ×2), 1.93 (2H, m, CH2), 3.57 (3H, s, NCH3), 3.82 (3H, s, 

OCH3), 4.33 (1H, f, J = 7.2 Hz, CH), 7.09 (2H, d, J = 8.4 Hz, ArH-3′, 5′), 7.42 (1H, t, J = 

8.0, ArH-6), 7.43 (3H, m, ArH-2′, 6′), 7.78 (2H, m, ArH-5, 7), 8.51 (1H, d, J = 8.0 Hz, 

ArH-8), 9.36 (1H, br, NH); MS m/z (%) 349 (M + 1, 100), 281 (M 67, 70).

 4-(3-Hydroxypropyl)amino-2-((N-(4-methoxyphenyl)-N-methyl)aminoquinazoline (5b)

Starting with 3b (160 mg, 0.67 mmol) and N-methyl-4-methoxyaniline (112 mg, 0.81 

mmol) to produce 165 mg of 5b in 73% yield, white solid, mp 188~190 °C; 1H NMR δ ppm 

1.75 (2H, m, CH2), 3.35–3.43 (4H, m, CH2×2), 3.56 (3H, s, NCH3), 3.82 (3H, s, OCH3), 

4.60 (1H, s, OH), 7.09 (2H, d, J = 8.8 Hz, ArH-3′, 5′), 7.43 (1H, m, ArH-6), 4,45 (2H, d, J = 

8.8 Hz, ArH-2′, 6′), 7.76 (2H, m, ArH-5, 7), 8.37 (1H, d, J = 8.0 Hz, ArH-8), 9.79 (1H, br, 

NH); MS m/z (%) 339 (M + 1, 100).

 2-(N-(4-Methoxyphenyl)-N-methyl)amino-4-propylaminoquinazoline (5c)

Starting with 3c (240 mg, 1.08 mmol) and 4-methoxy-N-methylaniline (180 mg, 1.31 mmol) 

to produce 270 mg of 5c in 86% yield, white solid, mp 191~193 °C; 1H NMR δ ppm 0.84 

(3H, t, J = 7.2 Hz, CH3), 1.58 (2H, m, CH2), 3.39 (2H, t, J = 7.2 Hz, NCH2,), 3.57 (3H, s, 

NCH3), 3.82 (3H, s, OCH3), 7.09 (2H, d, J = 8.8 Hz, ArH-3′, 5′), 7.42 (2H, d, J = 8.8 Hz, 

ArH-2′, 6′), 7.43 (1H, t, J = 8.0, ArH-6), 7.76 (2H, m, ArH-7,5), 8.40 (1H, d, J = 8.0 Hz, 

ArH-8), 9.87 (1H, br, NH); MS m/z (%) 322 (M + 1, 100).

 2-(N-(4-Methoxyphenyl)-N-methyl)amino-4-methylaminoquinazoline (5d)

Starting with 3d (185 mg, 0.96 mmol) and 4-methoxy-N-methylaniline (160 mg, 1.16 

mmol) to produce 214 mg of 5d in 76% yield, white solid, mp 204~206 °C; 1H NMR δ ppm 

3.02 (3H, br. s, NCH3), 3.58 (3H, s, NCH3), 3.83 (3H, s, OCH3), 7.11 (2H, d, J = 8.8 Hz, 

ArH-3′, 5′), 7.43 (1H, m, ArH-6), 7.44 (2H, d, J = 8.8 Hz, ArH-2′, 6′), 7.77 (2H, m, ArH-5, 

7), 8.37 (1H, d, J = 8.0 Hz, ArH-8), 9.91 (1H, br, NH); MS m/z (%) 295 (M + 1, 100).

 2-(N-(4-Methoxyphenyl)-N-methyl)amino-4-(N-morpholino)quinazoline (5e)

Starting with 3e (124 mg, 0.52 mmol) and 4-methoxy-N-methylaniline (75 mg, 0.55 mmol) 

to produce 138 mg of 5e in 80% yield, white solid, mp 143–145°C; 1H NMR δ ppm 3.48 

(4H, J = 4.2 Hz, NCH2×2), 3.48 (3H, s, NCH3), 3.69 (4H, t, J = 4.2 Hz, OCH2×2), 3.78 (3H, 

s, OCH3), 6.92 (2H, d, J = 8.8, ArH-3′, 5′), 7.13 (1H, td, J = 8.0 and 1.2 Hz, ArH-6), 7.27 

(2H, d, J = 8.8 Hz, ArH-2′, 6′), 7.41 (1H, d, J = 8.0 Hz, ArH-5), 7.57 (1H, td, J = 8.0 and 1.2 

Hz, ArH-7), 7.77 (1H, d, J = 8.0 Hz, ArH-8); MS m/z (%) 350 (M + 1, 30), 321 (M − 29, 

100).

 2-(N-(4-Methoxyphenyl)-N-methyl)amino-4-(N-((tetrahydro-2H-pyran-4-yl)methyl)aminoqui 
nazoline (5g)

Starting with 2-chloro-4-(N-((tetrahydro-2H-pyran-4-yl)methyl) aminoquinazolin (3g) (138 

mg, 0.50 mmol) and 4-methoxy-N-methylaniline (75 mg, 0.55 mmol) to produce 153 mg of 
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5g in 81% yield, white solid, mp 165–167°C; 1H NMR δ ppm 1.06 (2H, m, CH2), 1.36 (2H, 

m, CH2), 1.74 (1H, m, CH), 3.07 (2H, t, J = 6.0 Hz, NCH2), 3.15 (2H, t, J = 10.0 Hz, 

CH2O), 3.44 (3H, s, NCH3), 3.75 (3H, s, OCH3), 3.79 (2H, m, CH2O), 6.92 (2H, d, J = 8.0 

Hz, ArH-3′, 5′), 7.07 (1H, td, J = 8.0 and 1.2, ArH-6), 7.25 (2H, d, J = 8.0 Hz, ArH-2′, 6′), 

7.31 (1H, d, J = 8.0 Hz, ArH-5), 7.50 (1H, td, J = 8.0 and 1.2 Hz, ArH-7), 7.97 (1H, d, J = 

8.0 Hz, ArH-8), 8.03 (1H, t, J = 6.0 Hz, NH); MS m/z 379 (M + 1, 100).

 2-(4-Cyanophenyl)amino-4-(N-cyclopentyl)aminoquinazoline (6a)

Starting with 3a (249 mg, 1.01 mmol) and 4-cyanoaniline (125 mg, 1.10 mmol) to produce 

245 mg of 6a in 74 % yield, white solid, mp 218~220 °C; 1H NMR δ ppm 1.63 (2H, m, 

CH2), 1.79 (4H, m, CH2×2), 2.05 (2H, m, CH2), 4.54 (1H, f, J = 7.2 Hz, CH), 7.51 (1H, t, J 
= 8.0 Hz, ArH-6), 7.59 (1H, d, J = 8.0 Hz, ArH-5), 7.86 (2H, d, J = 8.0 Hz, ArH-2′, 6′), 7.90 

(1H, m, ArH-7), 7.91 (3H, d, J = 8.0 Hz, ArH-3′, 5′), 8.55 (1H, d, J = 8.0 Hz, ArH-8), 9.59 

and 10.95 (each 1H, s, NH); MS m/z (%) 330 (M + 1, 100).

 2-(4-Aminophenyl)amino-4-(N-cyclopentyl)aminoquinazoline (6b)

Starting with 3a (250 mg, 1.01 mmol) and benzene-1,4-diamine (123 mg, 1.13 mmol) to 

produce 220 mg of 6b in 69% yield, yellow solid, mp 223~225 °C; 1H NMR δ ppm 1.57 

(2H, m, CH2), 1.72 (4H, m, CH2×2), 2.00 (2H, m, CH2), 4.51 (1H, br, CH), 6.64 (2H, d, J = 

8.4 Hz, ArH-3′, 5′), 7.18 (2H, J = 8.4 Hz, ArH-2′, 6′), 7.40 (1H, t, J = 8.0 Hz, ArH-6), 7.54 

(1H, d, J = 8.0 Hz, ArH-5), 7.77 (1H, t, J = 8.0 Hz, ArH-7), 8.46 (1H, d, J = 8.0 Hz, ArH-8), 

9.25 (1H, br, NH), 10.05 (1H, br, NH); MS m/z (%) 320 (M + 1, 100), 252 (M − 67, 85).

 4-(N-Cyclopentyl)amino-2-(4-fluorophenyl)aminoquinazoline (6c)

Starting with 3a (245 mg, 0.99 mmol) and 4-fluoroaniline (140 mg, 1.15 mmol) to produce 

315 mg of 6c in 98% yield, white solid, mp 208~210 °C; 1H NMR δ ppm 1.58 (2H, m, 

CH2), 1.76 (4H, m, CH2×2), 1.99 (2H, m, CH2), 4.47 (1H, m, CH), 7.30 (2H, t, JH, F = 8.4 

Hz, ArH-3′, 5′), 7.46 (1H, t, J = 8.0 Hz, ArH-6), 7.56 (1H, d, J = 8.0 Hz, ArH-5), 7.62 (2H, 

dd, JH, F = 8.4 and 4.2 Hz, ArH-2′, 6′), 7.83 (1H, d, J = 8.0 Hz, ArH-7), 8.54 (1H, d, J = 8.0 

Hz, ArH-8), 9.48 (1H, s, NH), 10.53 (1H, s, NH); MS m/z (%) 323 (M + 1, 100), 255 (M 

− 67, 97).

 4-(N-Cyclopentyl)amino-2-(4-hydroxyphenyl)aminoquinazoline (6d)

Starting with 3a (255 mg, 1.03 mmol) and 4-aminophenol (120 mg, 1.10 mmol) to produce 

269 mg of 6d in 83% yield, light yellow solid, mp 169~171 °C; 1H NMR δ ppm 1.57 (2H, 

m, CH2), 1.73 (4H, m, CH2×2), 2.00 (2H, m, CH2), 4.50 (1H, br, CH), 6.81 (2H, d, J = 8.0 

Hz, ArH-3′, 5′), 7.38 (3H, J = 8.0 z, ArH-2′, 6′ and ArH-6), 7.51 (1H, d, J = 8.0 Hz, ArH-5), 

7.75 (1H, t, J = 8.0 Hz, ArH-7), 8.42 (1H, d, J = 8.0 Hz, ArH-8), 9.06 (1H, br, NH), 9.51 

(1H, br, OH), 10.05 (1H, br, NH); MS m/z (%) 321 (M + 1, 90), 253 (M − 67, 100).

 2-(4-Carboxyphenyl)amino-4-(N-cyclopentyl)aminoquinazoline (6e)

Starting with 3a (250 mg, 1.01 mmol) and 4-aminobenzoic acid (151 mg, 1.10 mmol) to 

produce 240 mg of 6e in 81% yield, white solid, mp 302~304 °C; 1H NMR δ ppm 1.63 (2H, 

m, CH2), 1.79 (4H, m, CH2×2), 2.05 (2H, m, CH2), 4.57 (1H, f, J = 6.4 Hz, CH), 7.50 (1H, 
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td, J = 8.0 Hz, ArH-6), 7.57 (1H, d, J = 8.0 Hz, ArH-5), 7.79 (2H, d, J = 8.8 Hz, ArH-3′, 5′), 

7.86 (1H, t, J = 8.0 Hz, ArH-7), 7.99 (2H, d, J = 8.8 Hz, ArH-2′, 6′), 8.53 (1H, d, J = 8.0 Hz, 

ArH-8), 9.50 (1H, s, NH), 10.79 (1H, s, NH), 12.90 (1H, s, COOH); MS m/z (%) 349 (M 

+ 1, 100).

 2-(4-Cyanophenyl)amino-4-((3-hydroxypropyl)amino)quinazoline (7a)

Starting with 3b (241 mg, 1.01 mmol) and 4-cyanoaniline (125 mg, 1.05 mmol) to produce 

48 mg of 7a in 34 % yield, white solid, mp 177~179 °C; 1H NMR δ ppm 1.84 (2H, f, J = 6.0 

Hz, CH2), 3.54 (2H, t, J = 6.0 Hz, NCH2), 3.70 (2H, m, OCH2), 4.62 (1H, br, OH), 7.51 (1H, 

t, J = 8.0 Hz, H-6), 7.59 (2H, d, J = 8.0 Hz, ArH-5), 7.85 (1H, m, ArH-7), 7.87 (2H, d, J = 

8.0 Hz, ArH-2′, 6′), 7.90 (2H, d, J = 8.0 Hz, ArH-3′, 5′), 8.40 (1H, d, J = 8.0 Hz, ArH-8), 

10.05 (1H, s, NH), 10.91 (1H, s, NH); MS m/z (%) 320 (M + 1, 100).

 2-(4-Aminophenyl)amino-4-((3-hydroxypropyl)aminoquinazoline (7b)

Starting with 3b (240 mg, 1.01 mmol) and benzene-1,4-diamine (120 mg, 1.10 mmol) to 

produce 196 mg of 7b in 63% yield, faint yellow, mp 274~276 °C; 1H NMR δ ppm 1.81 

(2H, m, CH2), 3.50 (2H, m, CH2), 3.61 (2H, m, CH2), 4.63 (1H, br, OH), 6.63 (2H, d, J = 

8.4 Hz, ArH-3′, 5′), 7.18 (2H, br, ArH-2′, 6′), 7.41 (1H, t, J = 8.0 Hz, ArH-6), 7.56 (1H, br. 

ArH-5), 7.77 (1H, t, J = 8.0 Hz, ArH-7), 8.31 (1H, d, J = 8.0 Hz, ArH-8), 9.58 (1H, br, NH), 

10.02 (1H, br, NH); MS m/z (%) 310 (M + 1, 100).

 2-(4-Fluorophenyl)amino-4-(3-hydroxypropyl)aminoquinazoline (7c)

Starting with 3b (237 mg, 1.00 mmol) and 4-fluoroaniline (133 mg, 1.05 mmol) to produce 

206 mg of 7c in 66% yield, white solid, mp 185~187 °C; 1H NMR δ ppm 1.80 (2H, f, J = 

6.4 Hz, CH2), 3.49 (2H, t, J = 6.4 Hz, CH2), 3.61 (2H, t, J = 6.4 Hz, CH2), 4.65 (1H, br, 

OH), 7.28 (2H, t, JH, F = 8.4 Hz, ArH-3′, 5′), 7.47 (1H, td, J = 8.0 Hz, ArH-6), 7.57 (1H, d, J 
= 8.0 Hz, ArH-5), 7.64 (2H, dd, JH, F = 8.4 and 4.2 Hz, ArH-2′, 6′), 7.83 (1H, t, J = 8.0 Hz, 

ArH-7), 8.36 (1H, d, J = 8.0 Hz, ArH-8), 9.85 (1H, br, NH), 10.42 (1H, br, NH); MS m/z 
(%) 313 (M + 1, 100).

 4-Propylamino-2-(4-fluorophenyl)aminoquinazoline (7d)

Starting with 3c (133 mg, 0.60 mmol) and 4-fluoroaniline (75 mg, 0.67 mmol) to produce 

120 mg of 7d in 67% yield, faint yellow solid, mp 202~204 °C; 1H NMR δ ppm 0.91 (3H, t, 

J = 7.2 Hz, CH3), 1.65 (2H, six, J = 7.2 Hz, CH2), 3.48 (2H, m, CH2), 7.28 (2H, t, JH, F = 8.4 

Hz, ArH-3′, 5′), 7.46 (1H, t, J = 8.0 Hz, ArH-6), 7.56 (1H, d, J = 8.0 Hz, ArH-5), 7.62 (2H, 

dd, JH,F = 8.4 and 4.2 Hz, ArH-2′, 6′), 7.82 (1H, t, J = 8.0 Hz, ArH-7), 8.39 (1H, d, J = 8.0 

Hz, ArH-8), 9.87 (1H, br, NH), 10.44 (1H, br, NH); MS m/z (%) 297 (M + 1, 100).

 2-(4-Fluorophenyl)amino-4-(N-morpholino)quinazoline (7e)

Starting with 3e (85 mg, 0.34 mmol) and 4-fluoroaniline (45 mg, 0.41 mmol) to produce 86 

mg of 7e in 78% yield, white solid, mp 223~225 °C; 1H NMR δ ppm 3.67 (4H, t, J = 4.2 Hz, 

2 × NCH2), 3.81 (4H, t, J = 4.2 Hz, 2 × OCH2), 7.13 (2H, t, JH, F = 8.4 Hz, ArH-3′, 5′), 7.22 

(1H, d, J = 8.0 Hz, ArH-6), 7.54 (1H, d, J = 8.0 Hz, ArH-5), 7.64(1H, dd, J = 8.0 Hz, 
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ArH-7), 7.86 (1H, d, J = 8.0 Hz, ArH-8), 7.91 (2H, dd, JH,F = 8.4 and 4.2 Hz, ArH-2′, 6′), 

9.39 (1H, s, NH); MS m/z (%) 325 (M + 1, 100).

 2-(4-Aminophenyl)amino-4-(N-morpholino)quinazoline (7f)

Starting with 3e (125 mg, 0.50 mmol) and benzene-1,4-diamine (60 mg, 0.57 mmol) to 

produce 152 mg of 7f in 94% yield, white solid, mp 195~197 °C; 1H NMR δ ppm 3.59 (4H, 

t, J = 4.0 Hz, 2 × NCH2), 3.80 (4H, t, J = 4.0 Hz, OCH2 ×2), 4.76 (2H, br, NH2), 6.52 (2H, 

d, J = 8.0 Hz, ArH-3′, 5′), 7.13 (1H, t, J = 8.4 Hz, ArH-6), 7.42 (1H, d, J = 8.4 Hz, ArH-5), 

7.46 (2H, d, J = 8.0 Hz, ArH-2′, 6′), 7.57 (1H, t, J = 8.4 Hz, ArH-7), 7.79 (1H, d, J = 8.4 Hz, 

ArH-8), 8.83 (1H, s, NH); MS m/z (%) 322 (M + 1, 100).

 Mer Tyrosine Kinase assay11

Inhibition of Mer kinase by a test compound was measured in the Microfluidic Capillary 

Electrophoresis (MCE) assay. This activity assay was performed in a 384-well, 

polypropylene microplate (Greiner BioOne, Monroe, NC) in a final volume of 50 µL in 50 

mM Hepes, pH 7.4 containing 0.1% bovine serum albumin (BSA), 0.1% Triton X-100, 10 

mM MgCl2 and ATP at 27 µM for the enzyme. All reactions were terminated by addition of 

50 µL of 70 mM EDTA. Phosphorylated and unphosphorylated substrate peptides 

(EFPIYDFLPAKKK-CONH2 for Mer TK) were separated following a 180 min incubation 

on a Caliper LabChip EZ Reader II equipped with a 12-sipper chip in separation buffer 

supplemented with CR-8 and analyzed using EZ Reader software (Caliper Life Sciences; 

Hopkinton, MA). The assay conditions for MCE assays and screening against 72 kinases are 

described in Supporting Information (SI).

 Antiproliferative activity in cellular assays

According to procedures described previously,20–22 target compounds were assayed by using 

the SRB method with a HTCL panel, included human lung carcinoma (A-549), epidermoid 

carcinoma of the nasopharynx (KB), P-gp-expressing epidermoid carcinoma of the 

nasopharynx (KBvin), and prostate cancer (DU145). Whereas, MTT method was used to 

evaluate antitumor activity in human myelogenous leukemia (MV4-11) cell line. The 

potency of each compound was expressed as GI50 value, which represents the molar drug 

concentration required to cause 50% tumor cell growth inhibition. All data represent at least 

three independent experiments performed in duplicate.

 Aqueous Solubility Determination

Solubility was measured separately at pH 7.4 by using an HPLC-UV method. Test 

compounds were initially dissolved in DMSO at 10 mg/mL. Ten microliters of this stock 

solution were spiked into either pH 7.4 phosphate buffer (1.0 mL) with the final DMSO 

concentration being 1%. The mixture was stirred for 4 h at room temperature, and then 

concentrated at 10,000 rpm for 5 min. The saturated supernatants were transferred to other 

vials for analysis by HPLC-UV and detected at 254 nm. Each sample was performed in 

triplicate. For quantification, a model 1200 HPLC-UV (Agilent) system was used with an 

Agilent Eclipse XDB-C18 column (150 × 4.6 mm, 5 m) and gradient elution of methanol 

(MeOH) in water, starting with 60% of MeOH, which was linearly increased up to 80% over 
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10 min, then slowly increased up to 90% over 15 min. The flow rate was 1.0 mL/min, and 

injection volume was 15 µL. Aqueous concentration was determined by comparison of the 

peak area of the saturated solution with a standard curve plotted as peak area versus known 

concentrations, which were prepared by solutions of test compound in acetonitrile (ACN) at 

50 µg/mL, 25 µg/mL, 12.5 µg/mL, 3.13 µg/mL, 0.78 µg/mL, and 0.20 µg/mL.

 Log P Measurement

Using the same DMSO stock solution (10 mg/mL) as above, 10 µL of this solution was 

added into n-octanol (0.6 mL) and water (0.6 mL). The mixture was stirred at room 

temperature for 24 h and then left to stand overnight. Each solution (ca. 0.2 mL) from two 

phases was transferred respectively into other vials for HPLC analysis. The instrument and 

conditions were the same as those for solubility determination. Log P value was calculated 

by the peak area ratios in n-octane and in water (log P = log (Soct/Swater).

 Molecular Modeling

All molecular modeling studies were performed with Discovery Studio 3.0 (Accelrys, San 

Diego, USA). The crystal structure of Mer kinase in complex with UNC569 (PDB code: 

3TCP) was downloaded from the RCSB Protein Data Bank (http://www.rcsb.org/pdb) for 

use in the modeling study. Flexible Docking was used to evaluate and predict in silico 

binding free energy of the inhibitors and for automated docking. The protein protocol was 

prepared by several operations, including standardization of atom names, insertion of 

missing atoms in residues and removal of alternate conformations, insertion of missing loop 

regions based on SEQRES data, optimization of short and medium size loop regions with 

the Looper algorithm, minimization of remaining loop regions, calculation of pK, and 

protonation of the structure. The protein model was typed with the CHARMM force field. A 

binding sphere with a radius of 8.0 Å was defined through the original ligand (UNC569) as 

the binding site for the study. The docking protocol employed total ligand and the side chain 

of amino acids Leu671, Pro672, Phe673, Met674, Asp678, Arg727 and Asn728 flexibility, 

and the final ligand conformations were determined by the simulated annealing molecular 

dynamics search method set to a variable number of trial runs. Docked ligand 4b was further 

refined using in situ ligand minimization with the Smart Minimizer algorithm by standard 

parameters. The implicit solvent model of Generalized Born with Molecular Volume 

(GBMV) was also used to calculate the binding energies.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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 Abbreviations

ALL acute lymphocytic leukaemia

ADMET absorption, distribution, metabolism, elimination and toxicity

A549 human lung cancer cell line

DU145 prostate cancer cell line

GI50 effective concentration for 50% cell growth inhibition

HTCL human tumor cell lines

IC50 effective concentration that inhibits 50% Mer tyrosine kinase

K562 human chronic myelogenous leukemia cell line

KB nasopharyngeal carcinoma cell line

KB-vin vincritstine-resistant KB subline cell line

Mer TK Mer tyrosine kinase

MV4-11 acute leukemia cell line

PDB protein data base

SAR structure-activity relationship.

References

1. Linger RMA, DeRyckere D, Brandao L, Sawczyn KK, Jacobsen KM, Liang X, Keating AK, 
Graham DK. Blood. 2009; 114:2678–2687. [PubMed: 19643988] 

2. O’Leary M, Krailo M, Anderson JR, Reaman GH. Seminars in Oncology. 2008; 35:484–493. 
[PubMed: 18929147] 

3. Salzer WL, Devidas M, Carroll WL, Winick N, Pullen J, Hunger SP, Camitta BA. Leukemia. 2009; 
24:355–370. [PubMed: 20016527] 

4. Schultz KR, Bowman WP, Aledo A, Slayton WB, Sather H, Devidas M, Wang C, Davies SM, 
Gaynon PS, Trigg M, Rutledge R, Burden L, Jorstad D, Carroll A, Heerema NA, Winick N, 
Borowitz MJ, Hunger SP, Carroll WL, Camitta B. Journal of Clinical Oncology. 2009; 27:5175–
5181. [PubMed: 19805687] 

5. Guttridge KL, Luft JC, Dawson TL. J. Biol. Chem. 2002; 277(27):24057–24066. [PubMed: 
11929866] 

6. Graham DK, Salzberg DB, Kurtzberg J, Sather S, Matsushima GK, Keating AK, Liang X, Lovell 
MA, Williams SA, Dawson TL, Schell MJ, Anwar AA, Snodgrass HR, Earp HS. Clin Cancer Res. 
2006; 12:2662–2669. [PubMed: 16675557] 

7. Keating AK, Salzberg DB, Sather S, Liang X, Nickoloff S, Anwar A, Deryckere D, Hill K, Joung D, 
Sawczyn KK, Park J, Curran-Everett D, McGavran L, Meltesen L, Gore L, Johnson GL, Graham 
DK. Oncogene. 2006; 25:6092–6100. [PubMed: 16652142] 

8. Linger RMA, Keating AK, Earp HS, Graham DK. Advances in Cancer Research. 2008:35–83. 
[PubMed: 18620092] 

9. Linger RMA, Keating AK, Earp HS, Graham DK. Expert Opin. Ther. Tatgets. 2010; 14(10):1073–
1990.

Wang et al. Page 15

Bioorg Med Chem. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



10. Huang X, Finerty P Jr, Walker JR, Butler-Cole C, Vedadi M, Schapira M, Parker SA, Turk BE, 
Thompson DA, DhePaganon S. J. Struct. Biol. 2009; 165:88–96. [PubMed: 19028587] 

11. Liu J, Yang C, Simpson C, DeRyckere D, Deusen AV, Miley MJ, Kireev D, Norris-Drouin J, Sather 
S, Hunter D, Korboukh VK, Patel HS, Janzen WB, Machius M, Johnson GL, Earp HS, Graham 
DK, Frye SV, Wang X. ACS Med. Chem. Lett. 2012; 3:129–134. [PubMed: 22662287] 

12. Zhang W, Zhang D, Stashko MA, DeRyckere D, Hunter D, Kireev D, Miley MJ, Cummings C, Lee 
M, Norris-Drouin J, Stewart WM, Sather S, Zhou Y, Kirkpatrick G, Machius M, Janzen WP, Earp 
HS, Graham DK, Frye SV, Wang X. J. Med. Chem. 2013; 56:9683–9692. [PubMed: 24195762] 

13. Zhang W, McIver AL, Stashko MA, DeRyckere D, Branchford BR, Hunter D, Kireev D, Miley 
MJ, Norris-Drouin J, Stewart WM, Lee M, Sather S, Zhou Y, Di Paola JA, Machius M, Janzen WP, 
Earp HS, Graham DK, Frye SV, Wang X. J. Med. Chem. 2013; 56:9693–9700. [PubMed: 
24219778] 

14. Wang XF, Tian XT, Ohkoshi E, Qin B, Liu YN, Wu PC, Hung HY, Hour MJ, Qian K, Huang R, 
Bastow KF, Janzen WP, Jin J, Morris-Natschke SL, Lee KH, Xie L. Bioorg. Med. Chem. Lett. 
2012; 22:6224–6228. [PubMed: 22932313] 

15. Wang XF, Wang SB, Ohkoshi E, Wang LT, Hamel E, Qian K, Morris-Natschke SL, Lee KH, Xie L. 
Eur. J. Med. Chem. 2013; 67:196–207. [PubMed: 23867604] 

16. Wang XF, Guan F, Ohkoshi E, Guo W, Wang L, Zhu DQ, Wang SB, Wang LT, Hamel E, Yang D, 
Li L, Qian K, Morris-Natschke SL, Yuan S, Lee KH, Xie L. J. Med. Chem. 2014; 57:1390–1402. 
[PubMed: 24502232] 

17. Wang SB, Wang XF, Qin B, Ohkoshi E, Hsieh KY, Hamel E, Cui MT, Zhu DQ, Goto M, Morris-
Natschke SL, Lee KH, Xie L. Bioorg. Med. Chem. 2015; 23:5740–5747. [PubMed: 26242242] 

18. Smits RA, de Esch IJP, Zuiderveld OP, Broeker J, Sansuk K, Guaita E, Coruzzi G, Adami M, 
Haaksma E, Leurs R. J. Med. Chem. 2008; 51:7855–7865. [PubMed: 19053770] 

19. Sun LQ, Zhu L, Qian K, Qin B, Huang L, Chen CH, Lee KH, Xie L. J. Med. Chem. 2012; 
55:7219–7229. [PubMed: 22856541] 

20. Boyd, MR. Status of the NCI preclinical antitumor drug discovery screen. In: Devita, VT.; 
Hellman, S.; Rosenberg, SA., editors. Cancer: Principles and Practice of Oncology Updates. 
Philadelphia: Lippincott; 1989. p. 1-12.

21. Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Langley J, Cronise P, 
Vaigro-Wolff A, Gray-Goodrich M, Campbell H, Mayo J, Boyd M. J. Natl. Cancer Inst. 1991; 
83:757–766. [PubMed: 2041050] 

22. Houghton P, Fang R, Techatanawat I, Steventon G, Hylands PJ, Lee CC. Methods. 2007; 42:377–
387. [PubMed: 17560325] 

Wang et al. Page 16

Bioorg Med Chem. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
The Mer TK inhibitors reported

Wang et al. Page 17

Bioorg Med Chem. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Initial leads, modification strategy, and new compounds designed
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Figure 3a
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Figure 3b

Figure 3. 
(A) Predicted binding mode of 4b (orange) with Mer kinase (PDB code: 3TCP) overlapped 

with UNC569 (cyan, the original bound ligand of 3TCP). Surrounding amino acid side 

chains are shown in gray stick format and are labeled. Surface is added on the amino acids 

Lys619, Leu671, Ile650, Ala740 and Asp741 to show the forming “gate”. Hydrogen bonds 

are shown by yellow dashed lines, and the distance between ligands and protein is less than 

3 Å. Oxyen atoms are red and nitrogen atoms are blue in ligands and amino acid residues. 

(B) The binding modes of compounds 7a–7e (gray) superimposed on 4b (orange).
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Scheme 1. 
(a) THF, rt, < 60 min; (b) t-BuOK (2 equiv.), Pd(OAc)2/X-phos (5% and 4% equiv.), t-
BuOH/toluene (v:v 0.5/2.5 mL), microwave, 130 °C, 15 min (for 4b–f); (c) EtOH, 

microwave, 150 °C, 15–25 min.
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