20 research outputs found
Expression of immunoregulatory molecules by thyrocytes protects nonobese diabetic-H2h4 mice from developing autoimmune thyroiditis.
One approach to prevent tissue destruction by autoimmune attack in organ-specific autoimmune diseases is to protect the target tissue from autoimmune reaction, regardless of its persistent activity. To provide proof-of-principle for the feasibility of this approach, the immunoregulatory molecules, TNF-related apoptosis-inducing ligand (TRAIL) and indoleamine 2, 3-dioxygenase, were expressed in the thyroid glands using adenovirus vector in nonobese diabetic-H2(h4) mice that spontaneously develop thyroiditis. Mice were anesthetized, and the thyroid glands were exposed by neck dissection, followed by in situ infection with adenovirus vector (5 x 10(10) particles per mouse) twice or thrice, starting 1 d or 4 wk before mice were supplied with sodium iodine (NaI) water. After 8 wk NaI provision, the extent of thyroiditis, serum titers of antithyroglobulin antibodies, and cytokine expression in the spleen were examined. In situ infection of adenovirus expressing TRAIL or indoleamine 2, 3-dioxygenase, but not green fluorescent protein, significantly suppressed thyroiditis scores. However, antithyroglobulin antibody titers and expression levels of cytokines (interferon-gamma and IL-4) in the spleen remained unaltered. Importantly, adenovirus infection 4 wk after NaI provision was also effective at suppressing thyroiditis. The suppressive effect of TRAIL appears to be mediated at least partly by accumulation of CD4(+)Foxp3(+) regulatory T cells into the thyroid glands. Thus, localized expression of immunoregulatory molecules efficiently protected the thyroid glands from autoimmune attack without changing the systemic autoimmunity in nonobese diabetic-H2(h4) mice. This kind of immunological intervention, although it does not suppress autoimmune reactivity, may have a potential for treating organ-specific autoimmune diseases
Distinct role of T helper Type 17 immune response for Graves\u27 hyperthyroidism in mice with different genetic backgrounds.
T helper type 17 (Th17) cells, a newly identified effector T-cell subset, have recently been shown to play a role in numerous autoimmune diseases, including iodine-induced autoimmune thyroiditis in non-obese diabetic (NOD)-H2(h4) mice, which had previously been thought Th1-dominant. We here studied the role of Th17 in Graves\u27 hyperthyroidism, another thyroid-specific autoimmune disease, in a mouse model. Two genetically distinct BALB/c and NOD-H2(h4) strains with intact or disrupted IL-17 genes (IL-17(+/+) or IL-17(-/-)) were immunized with adenovirus (Ad) expressing the thyrotropin receptor (TSHR) A-subunit (Ad-TSHR289). Both IL-17(+/+) and IL-17(-/-) mice developed anti-TSHR antibodies and hyperthyroidism at equally high frequencies on the BALB/c genetic background. In contrast, some IL-17(+/+), but none of IL-17(-/-), mice became hyperthyroid on the NOD-H2(h4) genetic background, indicating the crucial role of IL-17 for development of Graves\u27 hyperthyroidism in non-susceptible NOD-H2(h4), but not in susceptible BALB/c mice. In the T-cell recall assay, splenocytes and lymphocytes from the draining lymph nodes from either mouse strains, irrespective of IL-17 gene status, produced IFN-γ and IL-10 but not other cytokines including IL-17 in response to TSHR antigen. Thus, the functional significance of Th17 may not necessarily be predictable from cytokine expression patterns in splenocytes or inflammatory lesions. In conclusion, this is, to our knowledge, the first report showing that the role of Th17 cells for the pathogenesis of a certain autoimmune disease depends on the mouse genetic backgrounds
Induction of Late-onset Spontaneous Autoimmune Thyroiditis by a Single Low-dose Irradiation in Thyroiditis-prone Non-obese Diabetic-H2h4 Mice
The previous data regarding the effect of irradiation on thyroid autoimmunity are controversial. We have recently reported the exacerbation of autoimmune thyroiditis by a single low dose (0.5 Gy) of whole body irradiation in thyroiditis-prone non-obese diabetic (NOD)-H2h4 mice treated with iodine for 8 weeks. However, it is uncertain in that report whether the results obtained by the provision of iodine in a relatively short period of time (8 weeks) accurately reflects the long-term consequences of low-dose irradiation on thyroid autoimmunity. Therefore, we repeated these experiments with mice that were monitored after irradiation without iodine treatment for up to 15 months. We found that a single low-dose (0.5 Gy) irradiation increased the incidence and severity of thyroiditis and the incidence and titers of anti-thyroglobulin autoantibodies at 15 months of age. The numbers of splenocytes and percentages of various lymphocyte subsets were not affected by irradiation. Thus, we conclude that low-dose irradiation also exacerbates late-onset spontaneous thyroiditis in NOD-H2h4 mice; one plausible explanation for this may be the acceleration of immunological aging by irradiation
T helper type 17 immune response plays an indispensable role for development of iodine-induced autoimmune thyroiditis in nonobese diabetic-H2h4 mice.
T helper type 1(Th1)/Th2 paradigm has been expanded by discovery of a novel effector T cell (T(eff)) subset, Th17 cells, which produce a proinflammatory cytokine IL-17. Th17 cells have recently been shown to play a major role in numerous autoimmune diseases that had previously been thought to be Th1-dominant diseases. We here studied the significance of Th17 cells in iodine-induced autoimmune thyroiditis in nonobese diabetic-H2(h4) mice, a mouse model of Hashimoto\u27s thyroiditis in humans, which spontaneously develop antithyroglobulin autoantibodies and intrathyroidal lymphocyte infiltration when supplied with iodine in the drinking water. We observed increased numbers of Th1 and Th17 cells in spleen and accumulation of both types of T(eff) in the thyroid glands of iodine-fed wild-type mice, indicating that Th17 cells as well as Th1 cells constitute thyroid lesions. Furthermore, the incidence and severity of intrathyroidal lymphocyte infiltration, and the titers of antithyroglobulin autoantibodies were markedly reduced in iodine-treated IL-17(-/-) mice as compared with wild-type mice. Of interest, IL-17(+/-) mice showed an intermediate phenotype. Therefore, the present study, together with a previous report demonstrating the importance of Th1, not Th2, immune response for developing thyroiditis using mice deficient for interferon-gamma or IL-4, clearly indicates that both Th1 and Th17 cells are critical T(eff) subsets for the pathogenesis of spontaneous autoimmune thyroiditis in nonobese diabetic-H2(h4) mice