12 research outputs found

    Corrigendum to ‘An international genome-wide meta-analysis of primary biliary cholangitis: Novel risk loci and candidate drugs’ [J Hepatol 2021;75(3):572–581]

    Get PDF

    Effects of upregulated indoleamine 2, 3-dioxygenase 1 by interferon γ gene transfer on interferon γ-mediated antitumor activity

    No full text
    Interferon γ (IFN-γ), an anticancer agent, is a strong inducer of indoleamine 2, 3-dioxygenase 1 (IDO1), which is a tryptophan-metabolizing enzyme involved in the induction of tumor immune tolerance. In this study, we investigated the IDO1 expression in organs after IFN-γ gene transfer to mice. IFN-γ gene transfer greatly increased the mRNA expression of IDO1 in many tissues with the highest in the liver. This upregulation was associated with reduced L-tryptophan levels and increased L-kynurenine levels in serum, indicating that IFN-γ gene transfer increased the IDO activity. Then, Lewis lung carcinoma (LLC) tumor-bearing wild-type and IDO1-knockout (IDO1 KO) mice were used to investigate the effects of IDO1 on the antitumor activity of IFN-γ. IFN-γ gene transfer significantly retarded the tumor growth in both strains without any significant difference in tumor size between the two groups. By contrast, the IDO1 activity was increased only in the wild-type mice by IFN-γ gene transfer, suggesting that cells other than LLC cells, such as tumor stromal cells, are the major contributors of IDO1 expression in LLC tumor. Taken together, these results imply that IFN-γ gene transfer mediated IDO1 upregulation in cells other than LLC cells has hardly any effect on the antitumor activity of IFN-γ

    Helical Polymers: Synthesis, Structures, and Functions

    No full text

    GENERAL SESSION

    No full text

    Corrigendum to ‘An international genome-wide meta-analysis of primary biliary cholangitis: Novel risk loci and candidate drugs’ [J Hepatol 2021;75(3):572–581] (Journal of Hepatology (2021) 75(3) (572–581), (S0168827821003342), (10.1016/j.jhep.2021.04.055))

    No full text
    It has come to our attention that the name of one of the authors in our manuscript was incorrectly spelled ‘Jinyoung Byan’; the correct spelling is ‘Jinyoung Byun’ as in the author list above. In addition, the excel files of the supplementary tables were not included during the online publication of our article. These have now been made available online. We apologize for any inconvenience caused

    Corrigendum to \u2018An international genome-wide meta-analysis of primary biliary cholangitis: Novel risk loci and candidate drugs\u2019 [J Hepatol 2021;75(3):572\u2013581] (Journal of Hepatology (2021) 75(3) (572\u2013581), (S0168827821003342), (10.1016/j.jhep.2021.04.055))

    No full text
    It has come to our attention that the name of one of the authors in our manuscript was incorrectly spelled \u2018Jinyoung Byan\u2019; the correct spelling is \u2018Jinyoung Byun\u2019 as in the author list above. In addition, the excel files of the supplementary tables were not included during the online publication of our article. These have now been made available online. We apologize for any inconvenience caused

    Corrigendum to ‘An international genome-wide meta-analysis of primary biliary cholangitis: Novel risk loci and candidate drugs’ [J Hepatol 2021;75(3):572–581] (Journal of Hepatology (2021) 75(3) (572–581), (S0168827821003342), (10.1016/j.jhep.2021.04.055))

    No full text

    An international genome-wide meta-analysis of primary biliary cholangitis: Novel risk loci and candidate drugs.

    Get PDF
    BACKGROUNDS & AIMS Primary biliary cholangitis (PBC) is a chronic liver disease in which autoimmune destruction of the small intrahepatic bile ducts eventually leads to cirrhosis. Many patients have inadequate response to licensed medications, motivating the search for novel therapies. Previous genome-wide association studies (GWAS) and meta-analyses (GWMA) of PBC have identified numerous risk loci for this condition, providing insight into its aetiology. We undertook the largest GWMA of PBC to date, aiming to identify additional risk loci and prioritise candidate genes for in silico drug efficacy screening. METHODS We combined new and existing genotype data for 10,516 cases and 20,772 controls from 5 European and 2 East Asian cohorts. RESULTS We identified 56 genome-wide significant loci (20 novel) including 46 in European, 13 in Asian, and 41 in combined cohorts; and a 57 genome-wide significant locus (also novel) in conditional analysis of the European cohorts. Candidate genes at newly identified loci include FCRL3, INAVA, PRDM1, IRF7, CCR6, CD226, and IL12RB1, which each play key roles in immunity. Pathway analysis reiterated the likely importance of pattern recognition receptor and TNF signalling, JAK-STAT signalling, and differentiation of T helper (T)1 and T17 cells in the pathogenesis of this disease. Drug efficacy screening identified several medications predicted to be therapeutic in PBC, some of which are well-established in the treatment of other autoimmune disorders. CONCLUSIONS This study has identified additional risk loci for PBC, provided a hierarchy of agents that could be trialled in this condition, and emphasised the value of genetic and genomic approaches to drug discovery in complex disorders. LAY SUMMARY Primary biliary cholangitis (PBC) is a chronic liver disease that eventually leads to cirrhosis. In this study, we analysed genetic information from 10,516 people with PBC and 20,772 healthy individuals recruited in Canada, China, Italy, Japan, the UK, or the USA. We identified several genetic regions associated with PBC. Each of these regions contains several genes. For each region, we used diverse sources of evidence to help us choose the gene most likely to be involved in causing PBC. We used these 'candidate genes' to help us identify medications that are currently used for treatment of other conditions, which might also be useful for treatment of PBC
    corecore