1,753 research outputs found
Nonvolatile memory with molecule-engineered tunneling barriers
We report a novel field-sensitive tunneling barrier by embedding C60 in SiO2
for nonvolatile memory applications. C60 is a better choice than ultra-small
nanocrystals due to its monodispersion. Moreover, C60 provides accessible
energy levels to prompt resonant tunneling through SiO2 at high fields.
However, this process is quenched at low fields due to HOMO-LUMO gap and large
charging energy of C60. Furthermore, we demonstrate an improvement of more than
an order of magnitude in retention to program/erase time ratio for a metal
nanocrystal memory. This shows promise of engineering tunnel dielectrics by
integrating molecules in the future hybrid molecular-silicon electronics.Comment: to appear in Applied Physics Letter
Lateral Effects in Fermion Antibunching
Lateral effects are analyzed in the antibunching of a beam of free
non-interacting fermions. The emission of particles from a source is
dynamically described in a 3D full quantum field-theoretical framework. The
size of the source and the detectors, as well as the temperature of the source
are taken into account and the behavior of the visibility is scrutinized as a
function of these parameters.Comment: 22 pages, 4 figure
Development of the Shinshu University Online System of General Academic Resources (SOAR)
This paper discusses the development of the Shinshu University Online System of General Academic Resources (SOAR). As a participant in the 2006-2007 Cyber Science Infrastructure (CSI) development project of the National Institute of Informatics (NII), Shinshu University is seeking to develop SOAR as an integrated academic resource system. In addition to developing an environment for providing accesstothe latest academic resources within the university, SOAR is intended to promulgate university research results and research activities, both within Japan and around the world, to a broad audience. Specifically, this system achieves mutual coordination by linking e-journals and the Web of Science to the researcher directory and the institutional repositoryâtwo system cornerstones. SOAR can be regarded as a potential model for future academic-resource systems. Although the Institutional Repository (SOAR-IR) was developed using existing software, the Researcher Directory (SOARRD) is a new system based on XML technology.ArticleProgress in Informatics. 5:137-151 (2008)journal articl
Review of CFD Guidelines for Dispersion Modeling
This is the review of CFD (Computational Fluid Dynamics) guidelines for dispersion modeling in the USA, Japan and Germany. Most parts of this review are based on the short report of the special meeting on CFD Guidelines held at the International Symposium on Computational Wind Engineering (CWE2014), University of Hamburg, June 2014. The objective of this meeting was to introduce and discuss the action program to make worldwide guidelines of CFD gas-dispersion modeling. The following six gas-dispersion guidelines including Verification and Validation (V&V) schemes are introduced by each author; (1) US CFD guidelines; (2) COST/ES1006; (3) German VDI (Verein Deutscher Ingenieure) guidelines; (4) Atomic Energy Society of Japan; (5) Japan Society of Atmospheric Environment; (6) Architectural Institute of Japan. All guidelines were summarized in the same format table shown in the main chapters in order to compare them with each other. In addition to the summary of guidelines, the overview of V&V schemes and many guidelines of CFD modeling in the USA are explained
Exact results of the mixed-spin Ising model on a decorated square lattice with two different decorating spins of integer magnitudes
The mixed-spin Ising model on a decorated square lattice with two different
decorating spins of the integer magnitudes S_B = 1 and S_C = 2 placed on
horizontal and vertical bonds of the lattice, respectively, is examined within
an exact analytical approach based on the generalized decoration-iteration
mapping transformation. Besides the ground-state analysis, finite-temperature
properties of the system are also investigated in detail. The most interesting
numerical result to emerge from our study relates to a striking critical
behaviour of the spontaneously ordered 'quasi-1D' spin system. It was found
that this quite remarkable spontaneous order arises when one sub-lattice of the
decorating spins (either S_B or S_C) tends towards their 'non-magnetic' spin
state S = 0 and the system becomes disordered only upon further single-ion
anisotropy strengthening. The effect of single-ion anisotropy upon the
temperature dependence of the total and sub-lattice magnetization is also
particularly investigated.Comment: 17 pages, 6 figure
Self-folding of supramolecular polymers into bioinspired topology.
Folding one-dimensional polymer chains into well-defined topologies represents an important organization process for proteins, but replicating this process for supramolecular polymers remains a challenging task. We report supramolecular polymers that can fold into protein-like topologies. Our approach is based on curvature-forming supramolecular rosettes, which affords kinetic control over the extent of helical folding in the resulting supramolecular fibers by changing the cooling rate for polymerization. When using a slow cooling rate, we obtained misfolded fibers containing a minor amount of helical domains that folded on a time scale of days into unique topologies reminiscent of the protein tertiary structures. Thermodynamic analysis of fibers with varying degrees of folding revealed that the folding is accompanied by a large enthalpic gain. The self-folding proceeds via ordering of misfolded domains in the main chain using helical domains as templates, as fully misfolded fibers prepared by a fast cooling rate do not self-fold
Geologic fault model based on the high-resolution seismic reflection profile and aftershock distribution associated with the 2004 Mid-Niigata Prefecture earthquake (M6.8), central Japan
Treatment with empagliflozin, an inhibitor of the sodium/glucose cotransporter 2 (SGLT2), is associated with slower progression of diabetic kidney disease. In this analysis, we explored the hypothesis that empagliflozin may have an impact on urinary peptides associated with chronic kidney disease (CKD). In this post-hoc, exploratory analysis, we investigated urine samples obtained from 40 patients with uncomplicated type 1 diabetes (T1D) before and after treatment with empagliflozin for 8 weeks to for significant post-therapy changes in urinary peptides. We further assessed the association of these changes with CKD in an independent cohort, and with a previously established urinary proteomic panel, termed CKD273. 107 individual peptides significantly changed after treatment. The majority of the empagliflozin-induced changes were in the direction of "CKD absent" when compare to patients with CKD and controls. A classifier consisting of these 107 peptides scored significantly different in controls, in comparison to CKD patients. However, empagliflozin did not impact the CKD273 classifier. Our data indicate that empagliflozin induces multiple significant changes in the urinary proteomic markers such as mucin and clusterin. The relationship between empagliflozin-induced proteomic changes and clinical outcomes merits further investigation
Effect of nanoscale curvature sign and bundle structure on supercritical H(2) and CH(4) adsorptivity of single wall carbon nanotube
The adsorptivities of supercritical CH(4) and H(2) of the external and internal tube walls of single wall carbon nanotube (SWCNT) were determined. The internal tube wall of the negative curvature showed the higher adsorptivities for supercritical CH(4) and H(2) than the external tube wall of the positive curvature due to their interaction potential difference. Fine SWCNT bundles were prepared by the capillary force-aided drying treatment using toluene or methanol in order to produce the interstitial pore spaces having the strongest interaction potential for CH(4) or H(2); the bundled SWCNT showed the highest adsorptivity for supercritical CH(4) and H(2). It was clearly shown that these nanostructures of SWCNTs are crucial for supercritical gas adsorptivity.ArticleADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY. 17(3):643-651 (2011)journal articl
Static black holes with a negative cosmological constant: Deformed horizon and anti-de Sitter boundaries
Using perturbative techniques, we investigate the existence and properties of
a new static solution for the Einstein equation with a negative cosmological
constant, which we call the deformed black hole. We derive a solution for a
static and axisymmetric perturbation of the Schwarzschild-anti-de Sitter black
hole that is regular in the range from the horizon to spacelike infinity. The
key result is that this perturbation simultaneously deforms the two boundary
surfaces--i.e., both the horizon and spacelike two-surface at infinity. Then we
discuss the Abbott-Deser mass and the Ashtekar-Magnon one for the deformed
black hole, and according to the Ashtekar-Magnon definition, we construct the
thermodynamic first law of the deformed black hole. The first law has a
correction term which can be interpreted as the work term that is necessary for
the deformation of the boundary surfaces. Because the work term is negative,
the horizon area of the deformed black hole becomes larger than that of the
Schwarzschild-anti-de Sitter black hole, if compared under the same mass,
indicating that the quasistatic deformation of the Schwarzschild-anti-de Sitter
black hole may be compatible with the thermodynamic second law (i.e., the area
theorem).Comment: 31 pages, 5 figures, one reference added, to be published in PR
- âŠ