481 research outputs found

    Anomalous scaling of conductivity in integrable fermion systems

    Full text link
    We analyze the high-temperature conductivity in one-dimensional integrable models of interacting fermions: the t-V model (anisotropic Heisenberg spin chain) and the Hubbard model, at half-filling in the regime corresponding to insulating ground state. A microcanonical Lanczos method study for finite size systems reveals anomalously large finite-size effects at low frequencies while a frequency-moment analysis indicates a finite d.c. conductivity. This phenomenon also appears in a prototype integrable quantum system of impenetrable particles, representing a strong-coupling limit of both models. In the thermodynamic limit, the two results could converge to a finite d.c. conductivity rather than an ideal conductor or insulator scenario.Comment: 6 pages, 3 figures. Submitted to PR

    Real-time simulation of jet engines with digital computer. 1: Fabrication and characteristics of the simulator

    Get PDF
    The fabrication and performance of a real time jet engine simulator using a digital computer are discussed. The use of the simulator in developing the components and control system of a jet engine is described. Comparison of data from jet engine simulation tests with actual engine tests was conducted with good agreement

    A High-Resolution Compton Scattering Study of the Electron Momentum Density in Al

    Full text link
    We report high-resolution Compton profiles (CP's) of Al along the three principal symmetry directions at a photon energy of 59.38 keV, together with corresponding highly accurate theoretical profiles obtained within the local-density approximation (LDA) based band-theory framework. A good accord between theory and experiment is found with respect to the overall shapes of the CP's, their first and second derivatives, as well as the anisotropies in the CP's defined as differences between pairs of various CP's. There are however discrepancies in that, in comparison to the LDA predictions, the measured profiles are lower at low momenta, show a Fermi cutoff which is broader, and display a tail which is higher at momenta above the Fermi momentum. A number of simple model calculations are carried out in order to gain insight into the nature of the underlying 3D momentum density in Al, and the role of the Fermi surface in inducing fine structure in the CP's. The present results when compared with those on Li show clearly that the size of discrepancies between theoretical and experimental CP's is markedly smaller in Al than in Li. This indicates that, with increasing electron density, the conventional picture of the electron gas becomes more representative of the momentum density and that shortcomings of the LDA framework in describing the electron correlation effects become less important.Comment: 7 pages, 6 figures, regular articl

    The chemotherapeutic agent DMXAA as a unique IRF3-dependent type-2 vaccine adjuvant

    Get PDF
    5,6-Dimethylxanthenone-4-acetic acid (DMXAA), a potent type I interferon (IFN) inducer, was evaluated as a chemotherapeutic agent in mouse cancer models and proved to be well tolerated in human cancer clinical trials. Despite its multiple biological functions, DMXAA has not been fully characterized for the potential application as a vaccine adjuvant. In this report, we show that DMXAA does act as an adjuvant due to its unique property as a soluble innate immune activator. Using OVA as a model antigen, DMXAA was demonstrated to improve on the antigen specific immune responses and induce a preferential Th2 (Type-2) response. The adjuvant effect was directly dependent on the IRF3-mediated production of type-I-interferon, but not IL-33. DMXAA could also enhance the immunogenicity of influenza split vaccine which led to significant increase in protective responses against live influenza virus challenge in mice compared to split vaccine alone. We propose that DMXAA can be used as an adjuvant that targets a specific innate immune signaling pathway via IRF3 for potential applications including vaccines against influenza which requires a high safety profile

    Linear-stability analysis of plane beds under flows with suspended loads

    Get PDF
    Plane beds develop under flows in fluvial and marine environments; they are recorded as parallel lamination in sandstone beds, such as those found in turbidites. However, whereas turbidites typically exhibit parallel lamination, they rarely feature dune-scale cross-lamination. Although the reason for the scarcity of dune-scale cross-lamination in turbidites is still debated, the formation of dunes may be dampened by suspended loads. Here, we perform, for the first time, linear-stability analysis to show that flows with suspended loads facilitate the formation of plane beds. For a fine-grained bed, a suspended load can promote the formation of plane beds and dampen the formation of dunes. These results of theoretical analysis were verified with observational data of plane beds under open-channel flows. Our theoretical analysis found that suspended loads promote the formation of plane beds, which suggests that the development of dunes under turbidity currents is suppressed by the presence of suspended loads.</p

    Optical conductivity of the Hubbard model at finite temperature

    Full text link
    The optical conductivity, σ(ω)\sigma(\omega), of the two dimensional one-band Hubbard model is calculated at finite temperature using exact diagonalization techniques on finite clusters. The in-plane d.c. resistivity, ρab\rho_{ab}, is also evaluated. We find that at large U/t and temperature T, ρab\rho_{ab} is approximately linear with temperature, in reasonable agreement with experiments on high-Tc_c superconductors. Moreover, we note that σ(ω)\sigma(\omega) displays charge excitations, a mid-infrared (MIR) band and a Drude peak, also as observed experimentally. The combination of the Drude peak and the MIR oscillator strengths leads to a conductivity that decays slower than 1/ω21/\omega^2 at energies smaller than the insulator gap near half-filling.Comment: 12 pages, 3 figures appended, Revtex version 2.0, preprin

    System for Contributing and Discovering Derived Mission and Science Data

    Get PDF
    A system was developed to provide a new mechanism for members of the mission community to create and contribute new science data to the rest of the community. Mission tools have allowed members of the mission community to share first order data (data that is created by the mission s process in command and control of the spacecraft or the data that is captured by the craft itself, like images, science results, etc.). However, second and higher order data (data that is created after the fact by scientists and other members of the mission) was previously not widely disseminated, nor did it make its way into the mission planning process

    Charge Dynamics in the Planar t-J Model

    Full text link
    The finite-temperature optical conductivity σ(ω)\sigma(\omega) in the planar tJt-J model is analysed using recently introduced numerical method based on the Lanczos diagonalization of small systems (up to 20 sites), as well as by analytical approaches, including the method of frequency moments and the retraceable-path approximation. Results for a dynamical mobility of a single hole at elevated temperatures T>tT>t reveal a Gaussian-like μ(ω)\mu(\omega) spectra, however with a nonanalytical behavior at low ω\omega. In the single hole response a difference between the ferromagnetic (J=0) and the antiferromagnetic (J>0J>0) polaron shows up at T<JT<J. At larger dopings numerical results in studied systems are consistent with the thermodynamical behavior for T>T0.1 tT>T^*\ge 0.1~t. σ(ω)\sigma(\omega) spectra show a non-Drude falloff at large frequencies. In particular for `optimum' doping nh0.2n_h \sim 0.2 we obtain in the low-ω,T\omega,T regime the relaxation rate τ10.6(ω+ξT)\tau^{-1} \sim 0.6 (\omega+\xi T) with ξ3\xi \sim 3, being consistent with the marginal Fermi liquid concept and experiments. Within the same regime we reproduce the nearly linear variation of dc resistivity ρ\rho with TT. This behavior is weakly dependent on JJ, provided that J<tJ<t.Comment: 21 pages of text plus 17 figures, postscrip
    corecore