628 research outputs found
Bending and springback prediction method based on multi-scale finite element analyses for high bendability and low springback sheet generation
In this study, a sheet bendability and springback property evaluation technology through bending test simulations is newly developed using our multi-scale finite element analysis code, which is based on the crystallographic homogenization method
Real-time simulation of jet engines with digital computer. 1: Fabrication and characteristics of the simulator
The fabrication and performance of a real time jet engine simulator using a digital computer are discussed. The use of the simulator in developing the components and control system of a jet engine is described. Comparison of data from jet engine simulation tests with actual engine tests was conducted with good agreement
A High-Resolution Compton Scattering Study of the Electron Momentum Density in Al
We report high-resolution Compton profiles (CP's) of Al along the three
principal symmetry directions at a photon energy of 59.38 keV, together with
corresponding highly accurate theoretical profiles obtained within the
local-density approximation (LDA) based band-theory framework. A good accord
between theory and experiment is found with respect to the overall shapes of
the CP's, their first and second derivatives, as well as the anisotropies in
the CP's defined as differences between pairs of various CP's. There are
however discrepancies in that, in comparison to the LDA predictions, the
measured profiles are lower at low momenta, show a Fermi cutoff which is
broader, and display a tail which is higher at momenta above the Fermi
momentum. A number of simple model calculations are carried out in order to
gain insight into the nature of the underlying 3D momentum density in Al, and
the role of the Fermi surface in inducing fine structure in the CP's. The
present results when compared with those on Li show clearly that the size of
discrepancies between theoretical and experimental CP's is markedly smaller in
Al than in Li. This indicates that, with increasing electron density, the
conventional picture of the electron gas becomes more representative of the
momentum density and that shortcomings of the LDA framework in describing the
electron correlation effects become less important.Comment: 7 pages, 6 figures, regular articl
Crystal texture evolution analyses in metal drawing processes by using two-scale finite element method
Recently, the crystallographic control technology in the aluminum wire drawing process has been a key technology in the aluminum industries, which produces high-strength wires for the electric, automotive and aircraft parts. This newly proposed “process metallurgy” computational technology in the industrial forming process consists of the two-scale finite element (FE) analyses and the optimum design algorithm.We developed two-scale FE analyses code based on the crystallographic homogenization method by considering the hierarchical structure of polycrystal aluminium alloy metal. It can be characterized as the combination of two-scale structure, such as the microscopic polycrystal structure and the macroscopic elastic plastic continuum. Micro polycrystal structure is modelled as a three dimensional representative volume element (RVE). RVE is featured as 3x3x3 eight-nodes solid finite elements, which has totally 216 crystal orientations. This FE analyses code can predict the deformation, strain and stress evolutions in the wire drawing processes in the macro-scale, and simultaneously the crystal texture and hardening evolutions in the micro-scale. In this study, we analyzed the texture evolution in the “three passes” wire drawing processes by using our two-scale FE analyses code under conditions of various drawing angles of die. We evaluated the texture evolution in the surface and center regions of the wire cross section, and to clarify the effects of processing conditions on the texture evolution
Linear-stability analysis of plane beds under flows with suspended loads
Plane beds develop under flows in fluvial and marine environments; they are recorded as parallel lamination in sandstone beds, such as those found in turbidites. However, whereas turbidites typically exhibit parallel lamination, they rarely feature dune-scale cross-lamination. Although the reason for the scarcity of dune-scale cross-lamination in turbidites is still debated, the formation of dunes may be dampened by suspended loads. Here, we perform, for the first time, linear-stability analysis to show that flows with suspended loads facilitate the formation of plane beds. For a fine-grained bed, a suspended load can promote the formation of plane beds and dampen the formation of dunes. These results of theoretical analysis were verified with observational data of plane beds under open-channel flows. Our theoretical analysis found that suspended loads promote the formation of plane beds, which suggests that the development of dunes under turbidity currents is suppressed by the presence of suspended loads.</p
Tropical Rainfall Measurement Mission (TRMM) Operation Summary
The Tropical Rainfall Measurement Mission (TRMM) is a joint U.S. and Japan mission to observe tropical rainfall, which was launched by H-II No. 6 from Tanegashima in Japan at 6:27 JST on November 28, 1997. After the two-month commissioning of TRMM satellite and instruments, the original nominal mission lifetime was three years. In fact, the operations has continued for approximately 17.5 years. This paper provides a summary of the long term operations of TRMM
Effect of the adenovirus E1A gene on nitric oxide production in alveolar epithelial cells
ABSTRACTThis study determined the effect of the adenovirus E1A gene on nitric oxide (NO) production in alveolar epithelial (A549) cells. E1A-positive A549 cells (E1A transfectants), E1A-negative A549 cells (control transfectants) and untransfected A549 cells were placed in 96-well tissue culture plates. After stimulation with lipopolysaccharide (LPS) or cytokine mixture (CM), the biochemical reaction products of NO (nitrite and nitrate) in the culture medium were measured by chemiluminescence. The inducible (iNOS) and the endothelial (eNOS) isoforms of nitric oxide synthase (NOS) protein expression were examined by Western blotting. iNOS mRNA expression was examined by Northern blotting and RT-PCR. CM-induced NO production by E1A-positive A549 cells was significantly lower than that of E1A-negative cells (p < 0.0001). LPS stimulation failed to enhance NO production in both cell types. CM induced iNOS protein expression in E1A-negative A549 cells, but not in E1A-positive cells. eNOS protein expression was constitutive and was not affected by CM stimulation, LPS stimulation or E1A. CM induced iNOS mRNA expression in E1A-negative A549 cells, but not in E1A-positive cells. In conclusion, the adenovirus E1A gene suppressed NO production through transcriptional control of the iNOS gene in A549 cells. This inhibition of NO production may enable the virus to persist in human tissue, since NO is an antiviral effector of the innate immune system
Optical conductivity of the Hubbard model at finite temperature
The optical conductivity, , of the two dimensional one-band
Hubbard model is calculated at finite temperature using exact diagonalization
techniques on finite clusters. The in-plane d.c. resistivity, , is
also evaluated. We find that at large U/t and temperature T, is
approximately linear with temperature, in reasonable agreement with experiments
on high-T superconductors. Moreover, we note that displays
charge excitations, a mid-infrared (MIR) band and a Drude peak, also as
observed experimentally. The combination of the Drude peak and the MIR
oscillator strengths leads to a conductivity that decays slower than
at energies smaller than the insulator gap near half-filling.Comment: 12 pages, 3 figures appended, Revtex version 2.0, preprin
- …