6,676 research outputs found

    Itinerant-localized dual character of a strongly-correlated superfluid Bose gas in an optical lattice

    Full text link
    We investigate a strongly-correlated Bose gas in an optical lattice. Extending the standard-basis operator method developed by Haley and Erdos to a boson Hubbard model, we calculate excitation spectra in the superfluid phase, as well as in the Mott insulating phase, at T=0. In the Mott phase, the excitation spectrum has a finite energy gap, reflecting the localized character of atoms. In the superfluid phase, the excitation spectrum is shown to have an itinerant-localized dual structure, where the gapless Bogoliubov mode (which describes the itinerant character of superfluid atoms) and a band with a finite energy gap coexist. We also show that the rf-tunneling current measurement would give a useful information about the duality of a strongly-correlated superfluid Bose gas near the superfluid-insulator transition.Comment: 10 pages, 4 figure

    Anomalous magnetic properties near Mott transition in Kagom\'e lattice Hubbard model

    Full text link
    We investigate the characteristics of the metallic phase near the Mott transition in the Kagom\'e lattice Hubbard model using the cellular dynamical mean field theory. By calculating the specific heat and spin correlation functions, we demonstrate that the quasiparticles show anomalous properties in the metallic phase close to the Mott transition. We find clear evidence for the multi-band heavy quasiparticles in the specific heat, which gives rise to unusual temperature dependence of the spin correlation functions.Comment: 2 pages, 3 figures, accepted for publication in J. Mag. Mag. Mater. (Proceedings of the ICM, Kyoto, Japan, August 2006

    Electric Field Modulation of Galvanomagnetic Properties of Mesoscopic Graphite

    Full text link
    Electric field effect devices based on mesoscopic graphite are fabricated for galvanomagnetic measurements. Strong modulation of magneto-resistance and Hall resistance as a function of gate voltage is observed as sample thickness approaches the screening length. Electric field dependent Landau level formation is detected from Shubnikov de Haas oscillations in magneto-resistance. The effective mass of electron and hole carriers has been measured from the temperature dependant behavior of these oscillations.Comment: 4 pages, 4 figures included, submitted to Phys. Rev. Let

    Detection of an X-Ray Hot Region in the Virgo Cluster of Galaxies with ASCA

    Get PDF
    Based on mapping observations with ASCA, an unusual hot region with a spatial extent of 1 square degree was discovered between M87 and M49 at a center coordinate of R. A. = 12h 27m 36s and Dec. = 9∘18′9^\circ18' (J2000). The X-ray emission from the region has a 2-10 keV flux of 1×10−111 \times 10^{-11} ergs s−1^{-1} cm−2^{-2} and a temperature of kT≳4kT \gtrsim 4 keV, which is significantly higher than that in the surrounding medium of ∼2\sim 2 keV. The internal thermal energy in the hot region is estimated to be VnkT∼1060V n k T \sim 10^{60} ergs with a gas density of ∼10−4\sim 10^{-4} cm−3^{-3}. A power-law spectrum with a photon index 1.7−2.31.7-2.3 is also allowed by the data. The hot region suggests there is an energy input due to a shock which is probably caused by the motion of the gas associated with M49, infalling toward the M87 cluster with a velocity ≳1000\gtrsim 1000 km s−1^{-1}.Comment: 12 pages, 3 figures, accepted to ApJ

    New Josephson Plasma Modes in Underdoped YBa2Cu3O6.6 Induced by Parallel Magnetic Field

    Full text link
    The c-axis reflectivity spectrum of underdoped YBa2Cu3O6.6 (YBCO) is measured below Tc=59K in parallel magnetic fields H//CuO2 up to 7T. Upon application of a parallel field, a new peak appears at finite frequency in the optical conductivity at the expense of suppression of c-axis condensate weight. We conclude that the dramatic change originates from different Josephson coupling strengths between bilayers with and without Josephson vortices. We find that the 400cm^-1 broad conductivity peak in YBCO gains the spectral weight under parallel magnetic field; this indicates that the condensate weight at \omega =0 is distributed to the intra-bilayer mode as well as to the new optical Josephson mode.Comment: 4 pages, 3 figure

    Recoil effects of photoelectrons in a solid

    Full text link
    High energy resolution C 1ss photoelectron spectra of graphite were measured at the excitation energy of 340, 870, 5950 and 7940eV using synchrotron radiation. On increasing the excitation energy, i.e., increasing kinetic energy of the photoelectron, the bulk origin C 1ss peak position shifts to higher binding energies. This systematic shift is due to the kinetic energy loss of the high-energy photoelectron by kicking the atom, and is clear evidence of the recoil effect in photoelectron emission. It is also observed that the asymmetric broadening increases for the higher energy photoelectrons. All these recoil effects can be quantified in the same manner as the M\"ossbauer effect for γ\gamma-ray emission from nuclei embedded in crystals.Comment: 4 pages, 2 figure
    • …
    corecore