13 research outputs found
Nine prohibited stimulants found in sports and weight loss supplements: deterenol, phenpromethamine (Vonedrine), oxilofrine, octodrine, beta-methylphenylethylamine (BMPEA), 1,3-dimethylamylamine (1,3-DMAA), 1,4-dimethylamylamine (1,4-DMAA), 1,3-dimethylbutylamine (1,3-DMBA) and higenamine.
Background
Weight loss and sports supplements containing deterenol have been associated with serious adverse events including cardiac arrest.
Objective
To determine the presence and quantity of experimental stimulants in dietary supplements labeled as containing deterenol sold in the United States.
Methods
Dietary supplements available for sale in the US and labeled as containing deterenol or one of its synonyms (e.g., isopropylnorsynephrine and isopropyloctopamine) were purchased online. For each brand, one container or subsample was analyzed by NSF International (Ann Arbor, MI) and one container or subsample by the Netherland’s National Institute for Public Health and the Environment (RIVM, Bilthoven, The Netherlands). When differences existed between the two containers or subsamples of the same brand, both products were reanalyzed by Sciensano (Brussels, Belgium). NSF International carried out qualitative and quantitative analyses using ultra-high-performance liquid chromatography (UHPLC) quadrupole-Orbitrap mass spectrometry. RIVM performed qualitative and quantitative analysis using UHPLC quadrupole time-of-flight mass spectrometry. Sciensano carried out qualitative analysis using UHPLC quadrupole-Orbitrap mass spectrometry.
Results
Seventeen brands of supplements were analyzed. Many brands included more than one prohibited stimulant in the same product: 4 brands (24%, 4/17) included 2 stimulants, 2 (12%, 2/17) combined 3 stimulants, and 2 (12%, 2/17) combined 4 stimulants. The range of quantities per recommended serving size of the 9 stimulants detected were 2.7 mg to 17 mg of deterenol; 1.3 mg to 20 mg of phenpromethamine (Vonedrine); 5.7 mg to 92 mg of beta-methylphenylethylamine (BMPEA); 18 mg to 73 mg of octodrine; 18 mg to 55 mg of oxilofrine; 48 mg of higenamine; 17 mg of 1,3-dimethylamylamine (1,3-DMAA); 1.8 mg to 6.6 mg of 1,3-dimethylbutylamine (1,3-DMBA); and 5.3 mg of 1,4-dimethylamylamine (1,4-DMAA).
Conclusion
Weight loss and sports supplements listing deterenol as an ingredient contained 9 prohibited stimulants and 8 different mixtures of stimulants, with as many as 4 experimental stimulants per product. These cocktails of stimulants have never been tested in humans and their safety is unknown.</p
The Clinical Toxicology of 4-Bromo-2,5-dimethoxyphenethylamine (2C-B): The Severity of Poisoning After Exposure to Low to Moderate and High Doses.
STUDY OBJECTIVE: We studied the severity of poisoning after exposure to low to moderate and high doses of 4-bromo-2,5-dimethoxyphenethylamine (2C-B). METHODS: Patients for whom the Dutch Poisons Information Centre was consulted for 2C-B exposure from 2016 to 2018 were included in a prospective cohort study. Data were collected through telephone interviews with the physician or patient. Patients were categorized according to the reported 2C-B dose: low to moderate (up to 20 mg), high (greater than 20 mg), or unknown. Presence of 2C-B was analyzed in leftover drug and biological samples with liquid/gas chromatography-mass spectrometry. The severity of poisoning was graded with the Poisoning Severity Score. RESULTS: We included 59 patients, of whom 32 could be followed up. Low to moderate 2C-B doses were reported by 9 patients (28%), high doses by 17 (53%), and unknown doses by 6 (19%). Poisoning was moderate in the majority of patients in both the low- to moderate-dose and high-dose groups. Frequently reported symptoms included mydriasis, agitation or aggression, hallucinations, confusion, anxiety, hypertension, and tachycardia. The presence of 2C-B was confirmed in 5 patients in urine (n=3) or drug samples (n=4). CONCLUSION: In this study, most 2C-B poisonings resulted in moderate toxicity even at high reported doses up to 192 mg. No severe cases were observed. The clinical course was usually short-lived (up to 24 hours) and typically involved hallucinations in addition to mild somatic effects
The effective design of sampling campaigns for emerging chemical and microbial contaminants in drinking water and its resources based on literature mining.
As well as known contaminants, surface waters also contain an unknown variety of chemical and microbial contaminants which can pose a risk to humans if surface water is used for the production of drinking water. To protect human health proactively, and in a cost-efficient way, water authorities and drinking water companies need early warning systems. This study aimed to (1) assess the effectiveness of screening the scientific literature to direct sampling campaigns for early warning purposes, and (2) detect new aquatic contaminants of concern to public health in the Netherlands. By screening the scientific literature, six example contaminants (3 chemical and 3 microbial) were selected as potential aquatic contaminants of concern to the quality of Dutch drinking water. Stakeholders from the Dutch water sector and various information sources were consulted to identify the potential sources of these contaminants. Based on these potential contamination sources, two sampling sequences were set up from contamination sources (municipal and industrial wastewater treatment plants), via surface water used for the production of drinking water to treated drinking water. The chemical contaminants, mycophenolic acid, tetrabutylphosphonium compounds and Hexafluoropropylene Oxide Trimer Acid, were detected in low concentrations and were thus not expected to pose a risk to Dutch drinking water. Colistin resistant Escherichia coli was detected for the first time in Dutch wastewater not influenced by hospital wastewater, indicating circulation of bacteria resistant to this last-resort antibiotic in the open Dutch population. Four out of six contaminants were thus detected in surface or wastewater samples, which showed that screening the scientific literature to direct sampling campaigns for both microbial and chemical contaminants is effective for early warning purposes.</p
3-Methylmethcathinone (3-MMC) Poisonings: Acute Clinical Toxicity and Time Trend Between 2013 and 2021 in the Netherlands.
STUDY OBJECTIVE: The synthetic cathinone 3-methylmethcathinone (3-MMC, or metaphedrone) has recently gained popularity. We studied the numbers of 3-MMC poisonings over time and the clinical effects following poisonings with 3-MMC. METHODS: We performed a retrospective study on the numbers of self-reported 3-MMC poisonings to the Dutch Poisons Information Center (DPIC) from 2013 to June 2021. For poisonings reporting 3-MMC only, the symptoms were extracted and the Poisoning Severity Score (PSS) was determined. From 2016 to June 2019, a prospective cohort study on poisonings reporting only 3-MMC was performed, in which details on the clinical courses were collected through telephone interviews. RESULTS: From 2013 to June 2021, the DPIC was consulted on 184 3-MMC poisonings. The number of poisonings increased from 1 in 2013 to 70 in the first half of 2021. In 84 poisonings with only 3-MMC (46%), sympathomimetic symptoms were commonly reported, including tachycardia (n=29, 35%), hypertension (n=17, 20%), and agitation (n=16, 19%). The initial PSS was usually minor (n=37, 44%) to moderate (n=39, 46%). Five patients (6%) experienced severe effects, including 3 patients experienced severe hypertension (systolic blood pressure >180 mmHg; n=3) and nonfatal cardiac arrest (n=1). Sympathomimetic symptoms (n=8) were also reported in the prospective cohort study. The percentage of moderate poisonings increased (n=6, 75%), and 1 (13%) severe poisoning was observed. Analytical confirmation of 3-MMC exposure was performed in 2 cases. CONCLUSION: The number of 3-MMC poisonings reported to the DPIC has increased over time. Most poisonings with 3-MMC resulted in moderate toxicity and involved sympathomimetic effects, while severe effects were observed in 5 cases
The effective design of sampling campaigns for emerging chemical and microbial contaminants in drinking water and its resources based on literature mining
As well as known contaminants, surface waters also contain an unknown variety of chemical and microbial contaminants which can pose a risk to humans if surface water is used for the production of drinking water. To protect human health proactively, and in a cost-efficient way, water authorities and drinking water companies need early warning systems. This study aimed to (1) assess the effectiveness of screening the scientific literature to direct sampling campaigns for early warning purposes, and (2) detect new aquatic contaminants of concern to public health in the Netherlands. By screening the scientific literature, six example contaminants (3 chemical and 3 microbial) were selected as potential aquatic contaminants of concern to the quality of Dutch drinking water. Stakeholders from the Dutch water sector and various information sources were consulted to identify the potential sources of these contaminants. Based on these potential contamination sources, two sampling sequences were set up from contamination sources (municipal and industrial wastewater treatment plants), via surface water used for the production of drinking water to treated drinking water. The chemical contaminants, mycophenolic acid, tetrabutylphosphonium compounds and Hexafluoropropylene Oxide Trimer Acid, were detected in low concentrations and were thus not expected to pose a risk to Dutch drinking water. Colistin resistant Escherichia coli was detected for the first time in Dutch wastewater not influenced by hospital wastewater, indicating circulation of bacteria resistant to this last-resort antibiotic in the open Dutch population. Four out of six contaminants were thus detected in surface or wastewater samples, which showed that screening the scientific literature to direct sampling campaigns for both microbial and chemical contaminants is effective for early warning purposes.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Sanitary Engineerin