41,481 research outputs found
Stability and asymptotic behavior of periodic traveling wave solutions of viscous conservation laws in several dimensions
Under natural spectral stability assumptions motivated by previous
investigations of the associated spectral stability problem, we determine sharp
estimates on the linearized solution operator about a multidimensional
planar periodic wave of a system of conservation laws with viscosity, yielding
linearized stability for all and dimensions and nonlinear stability and
-asymptotic behavior for and . The behavior can in
general be rather complicated, involving both convective (i.e., wave-like) and
diffusive effects
Higher Derivative CP(N) Model and Quantization of the Induced Chern-Simons Term
We consider higher derivative CP(N) model in 2+1 dimensions with the
Wess-Zumino-Witten term and the topological current density squared term. We
quantize the theory by using the auxiliary gauge field formulation in the path
integral method and prove that the extended model remains renormalizable in the
large N limit. We find that the Maxwell-Chern-Simons theory is dynamically
induced in the large N effective action at a nontrivial UV fixed point. The
quantization of the Chern-Simons term is also discussed.Comment: 8 pages, no figure, a minor change in abstract, added Comments on the
quantization of the Chern-Simons term whose coefficient is also corrected,
and some references are added. Some typos are corrected. Added a new
paragraph checking the equivalence between (3) and (5), and a related
referenc
Charmonium-hadron interactions from QCD
The heavy quark system is an excellent probe to learn about the QCD dynamics
at finite density. First, we discuss the properties of the and
meson at finite nucleon density. We discuss why their properties should change
at finite density and then introduce an exact QCD relation among these hadron
properties and the energy momentum tensor of the medium. Second, we discuss
attempts to calculate charmonium-hadron total cross section using effective
hadronic models and perturbative QCD. We emphasize a recent calculation, where
the cross section is derived using QCD factorization theorem. We conclude by
discussing some challenges for SIS 200.Comment: 8 pages, Presented at 6th International Conference on Strange Quarks
in Matter: 2001: A Flavorspace Odyssey (SQM2001), Frankfurt, Germany, 25-29
Sep 2001, submitted to J. Phys.
Radiation Hardness and Linearity Studies of CVD Diamonds
We report on the behavior of CVD diamonds under intense electromagnetic
radiation and on the response of the detector to high density of deposited
energy. Diamonds have been found to remain unaffected after doses of 10 MGy of
MeV-range photons and the diamond response to energy depositions of up to 250
GeV/cm^3 has been found to be linear to better than 2 %. These observations
make diamond an attractive detector material for a calorimeter in the very
forward region of the detector proposed for TESLA.Comment: 4 pages, 5 figures; Proceeding for the topical Seminar on Innovative
Particle and Radiation Detectors Siena, 21-24 October 2002; to appear in
Nucl.Phys. B (Proceedings Supplement
Energy levels of the soliton--heavy-meson bound states
We investigate the bound states of heavy mesons with finite masses to a
classical soliton solution in the Skyrme model. For a given model Lagrangian we
solve the equations of motion exactly so that the heavy vector mesons are
treated on the same footing as the heavy pseudoscalar mesons. All the energy
levels of higher grand spin states as well as the ground state are given over a
wide range of the heavy meson masses. We also examine the validity of the
approximations used in the literatures. The recoil effect of finite mass
soliton is naively estimated.Comment: 24 pages, REVTeX v3.0, 6 figures are available upon request
Determination of the gaseous hydrogen ductile-brittle transition in copper-nickel alloys
A series of copper-nickel alloys were fabricated, notched tensile specimens machined for each alloy, and the specimens tested in 34.5 MPa hydrogen and in air. A notched tensile ratio was determined for each alloy and the hydrogen environment embrittlement (HEE) determined for the alloys of 47.7 weight percent nickel to 73.5 weight percent nickel. Stacking fault probability and stacking fault energies were determined for each alloy using the x ray diffraction line shift and line profiles technique. Hydrogen environment embrittlement was determined to be influenced by stacking fault energies; however, the correlation is believed to be indirect and only partially responsible for the HEE behavior of these alloys
Epitaxial aluminium-nitride tunnel barriers grown by nitridation with a plasma source
High critical current-density (10 to 420 kA/cm^2)
superconductor-insulator-superconductor tunnel junctions with aluminium nitride
barriers have been realized using a remote nitrogen plasma from an inductively
coupled plasma source operated in a pressure range of 10^{-3} to 10^{-1} mbar.
We find a much better reproducibility and control compared to previous work.
From the current-voltage characteristics and cross-sectional TEM images it is
inferred that, compared to the commonly used AlO_x barriers, the
poly-crystalline AlN barriers are much more uniform in transmissivity, leading
to a better quality at high critical current-densities.Comment: 3 pages, 3 figures, accepted for publication in AP
Direct-write, focused ion beam-deposited,7 K superconducting C-Ga-O nanowire
We have fabricated C-Ga-O nanowires by gallium focused ion beam-induced
deposition from the carbon-based precursor phenanthrene. The electrical
conductivity of the nanowires is weakly temperature dependent below 300 K, and
indicates a transition to a superconducting state below Tc = 7 K. We have
measured the temperature dependence of the upper critical field Hc2(T), and
estimate a zero temperature critical field of 8.8 T. The Tc of this material is
approximately 40% higher than that of any other direct write nanowire, such as
those based on C-W-Ga, expanding the possibility of fabricating direct-write
nanostructures that superconduct above liquid helium temperaturesComment: Accepted for AP
Coexistence of bulk and surface states probed by Shubnikov-de Haas oscillations in BiSe with high charge-carrier density
Topological insulators are ideally represented as having an insulating bulk
with topologically protected, spin-textured surface states. However, it is
increasingly becoming clear that these surface transport channels can be
accompanied by a finite conducting bulk, as well as additional topologically
trivial surface states. To investigate these parallel conduction transport
channels, we studied Shubnikov-de Haas oscillations in BiSe thin films,
in high magnetic fields up to 30 T so as to access channels with a lower
mobility. We identify a clear Zeeman-split bulk contribution to the
oscillations from a comparison between the charge-carrier densities extracted
from the magnetoresistance and the oscillations. Furthermore, our analyses
indicate the presence of a two-dimensional state and signatures of additional
states the origin of which cannot be conclusively determined. Our findings
underpin the necessity of theoretical studies on the origin of and the
interplay between these parallel conduction channels for a careful analysis of
the material's performance.Comment: Manuscript including supplemental materia
- …