1,776 research outputs found
Absorption cross section in warped AdS_3 black hole revisited
We investigate the absorption cross section for minimal-coupled scalars in
the warped AdS_3 black hole. According to our calculation, the cross section
reduces to the horizon area in the low energy limit as usually expected in
contrast to what was previously found. We also calculate the greybody factor
and find that the effective temperatures for the two chiral CFT's are
consistent with that derived from the quasinormal modes. Observing the
conjectured warped AdS/CFT correspondence, we suspect that a specific sector of
the CFT operators with the desired conformal dimension could be responsible for
the peculiar thermal behaviour of the warped AdS_3 black hole.Comment: 16+1 pages, typos corrected, references and footnotes adde
Mitigating smart card fault injection with link-time code rewriting: a feasibility study
We present a feasibility study to protect smart card software against fault-injection attacks by means of binary code rewriting. We implemented a range of protection techniques in a link-time rewriter and evaluate and discuss the obtained coverage, the associated overhead and engineering effort, as well as its practical usability
Experimental constraints on the parameter space of the next-to-minimal supersymmetric standard model at LEP 2
We search for the neutral Higgs sector of the next-to-minimal supersymmetric
standard model at LEP 2. At the tree level any experimental constraints on
cannot be set by the Higgs search at LEP 2 with = 175
GeV, whereas at LEP 2 with = 192 GeV can be set by an
experimental constraint. Furthermore the tree level parameter space of the
model can be completely explored by the Higgs search at LEP 2 with =
205 GeV. Radiative corrections both to the neutral Higgs boson masses and to
the relevant couplings for the scalar Higgs productions give large
contributions to the production cross sections of the scalar Higgs bosons at
the tree level. The tree level situation at LEP 2 with = 192 GeV as
well as with = 205 GeV can be drastically changed by these effects.
We expect that a small region of the 1-loop level parameter space of the model
via the scalar Higgs production can be explored by the Higgs search at LEP 2.Comment: 14 pages (3 figures are included
Chiral field theories from conifolds
We discuss the geometric engineering and large n transition for an N=1 U(n)
chiral gauge theory with one adjoint, one conjugate symmetric, one
antisymmetric and eight fundamental chiral multiplets. Our IIB realization
involves an orientifold of a non-compact Calabi-Yau A_2 fibration, together
with D5-branes wrapping the exceptional curves of its resolution as well as the
orientifold fixed locus. We give a detailed discussion of this background and
of its relation to the Hanany-Witten realization of the same theory. In
particular, we argue that the T-duality relating the two constructions maps the
Z_2 orientifold of the Hanany-Witten realization into a Z_4 orientifold in type
IIB. We also discuss the related engineering of theories with SO/Sp gauge
groups and symmetric or antisymmetric matter.Comment: 34 pages, 8 figures, v2: References added, minor correction
Critical behavior of the planar magnet model in three dimensions
We use a hybrid Monte Carlo algorithm in which a single-cluster update is
combined with the over-relaxation and Metropolis spin re-orientation algorithm.
Periodic boundary conditions were applied in all directions. We have calculated
the fourth-order cumulant in finite size lattices using the single-histogram
re-weighting method. Using finite-size scaling theory, we obtained the critical
temperature which is very different from that of the usual XY model. At the
critical temperature, we calculated the susceptibility and the magnetization on
lattices of size up to . Using finite-size scaling theory we accurately
determine the critical exponents of the model and find that =0.670(7),
=1.9696(37), and =0.515(2). Thus, we conclude that the
model belongs to the same universality class with the XY model, as expected.Comment: 11 pages, 5 figure
Holomorphic matrix models
This is a study of holomorphic matrix models, the matrix models which
underlie the conjecture of Dijkgraaf and Vafa. I first give a systematic
description of the holomorphic one-matrix model. After discussing its
convergence sectors, I show that certain puzzles related to its perturbative
expansion admit a simple resolution in the holomorphic set-up. Constructing a
`complex' microcanonical ensemble, I check that the basic requirements of the
conjecture (in particular, the special geometry relations involving chemical
potentials) hold in the absence of the hermicity constraint. I also show that
planar solutions of the holomorphic model probe the entire moduli space of the
associated algebraic curve. Finally, I give a brief discussion of holomorphic
models, focusing on the example of the quiver, for which I extract
explicitly the relevant Riemann surface. In this case, use of the holomorphic
model is crucial, since the Hermitian approach and its attending regularization
would lead to a singular algebraic curve, thus contradicting the requirements
of the conjecture. In particular, I show how an appropriate regularization of
the holomorphic model produces the desired smooth Riemann surface in the
limit when the regulator is removed, and that this limit can be described as a
statistical ensemble of `reduced' holomorphic models.Comment: 45 pages, reference adde
A Simple Shell Model for Quantum Dots in a Tilted Magnetic Field
A model for quantum dots is proposed, in which the motion of a few electrons
in a three-dimensional harmonic oscillator potential under the influence of a
homogeneous magnetic field of arbitrary direction is studied. The spectrum and
the wave functions are obtained by solving the classical problem. The ground
state of the Fermi-system is obtained by minimizing the total energy with
regard to the confining frequencies. From this a dependence of the equilibrium
shape of the quantum dot on the electron number, the magnetic field parameters
and the slab thickness is found.Comment: 15 pages (Latex), 3 epsi figures, to appear in PhysRev B, 55 Nr. 20
(1997
(Anti)symmetric matter and superpotentials from IIB orientifolds
We study the IIB engineering of N=1 gauge theories with unitary gauge group
and matter in the adjoint and (anti)symmetric representations. We show that
such theories can be obtained as Z2 orientifolds of Calabi-Yau A2 fibrations,
and discuss the explicit T-duality transformation to an orientifolded
Hanany-Witten construction. The low energy dynamics is described by a geometric
transition of the orientifolded background. Unlike previously studied cases, we
show that the orientifold 5-`plane' survives the transition, thus bringing a
nontrivial contribution to the effective superpotential. We extract this
contribution by using matrix model results and compare with geometric data. A
Higgs branch of our models recovers the engineering of SO/Sp theories with
adjoint matter through an O5-`plane' T-dual to an O6-plane. We show that the
superpotential agrees with that produced by engineering through an O5-`plane'
dual to an O4-plane, even though the orientifold of this second construction is
replaced by fluxes after the transition.Comment: 40 page
Charge-Symmetry Violation in Pion Scattering from Three-Body Nuclei
We discuss the experimental and theoretical status of charge-symmetry
violation (CSV) in the elastic scattering of pi+ and pi- on 3H and 3He.
Analysis of the experimental data for the ratios r1, r2, and R at Tpi = 142,
180, 220, and 256 MeV provides evidence for the presence of CSV. We describe
pion scattering from the three-nucleon system in terms of single- and
double-scattering amplitudes. External and internal Coulomb interactions as
well as the Delta-mass splitting are taken into account as sources of CSV.
Reasonable agreement between our theoretical calculations and the experimental
data is obtained for Tpi = 180, 220, and 256 MeV. For these energies, it is
found that the Delta-mass splitting and the internal Coulomb interaction are
the most important contributions for CSV in the three-nucleon system. The CSV
effects are rather sensitive to the choice of pion-nuclear scattering
mechanisms, but at the same time, our theoretical predictions are much less
sensitive to the choice of the nuclear wave function. It is found, however,
that data for r2 and R at Tpi = 142 MeV do not agree with the predictions of
our model, which may indicate that there are additional mechanisms for CSV
which are important only at lower energies.Comment: 26 pages of RevTeX, 16 postscript figure
The in-plane paraconductivity in La_{2-x}Sr_xCuO_4 thin film superconductors at high reduced-temperatures: Independence of the normal-state pseudogap
The in-plane resistivity has been measured in (LSxCO)
superconducting thin films of underdoped (), optimally-doped
() and overdoped () compositions. These films were grown
on (100)SrTiO substrates, and have about 150 nm thickness. The in-plane
conductivity induced by superconducting fluctuations above the superconducting
transition (the so-called in-plane paraconductivity, ) was
extracted from these data in the reduced-temperature range
10^{-2}\lsim\epsilon\equiv\ln(T/\Tc)\lsim1. Such a
was then analyzed in terms of the
mean-field--like Gaussian-Ginzburg-Landau (GGL) approach extended to the
high- region by means of the introduction of a total-energy cutoff,
which takes into account both the kinetic energy and the quantum localization
energy of each fluctuating mode. Our results strongly suggest that at all
temperatures above Tc, including the high reduced-temperature region, the
doping mainly affects in LSxCO thin films the normal-state properties and that
its influence on the superconducting fluctuations is relatively moderate: Even
in the high- region, the in-plane paraconductivity is found to be
independent of the opening of a pseudogap in the normal state of the underdoped
films.Comment: 35 pages including 10 figures and 1 tabl
- …
