1,781 research outputs found

    PIERCE1 is critical for specification of left-right asymmetry in mice.

    Get PDF
    The specification of left-right asymmetry of the visceral organs is precisely regulated. The earliest breakage of left-right symmetry occurs as the result of leftward flow generated by asymmetric beating of nodal cilia, which eventually induces asymmetric Nodal/Lefty/Pitx2 expression on the left side of the lateral plate mesoderm. PIERCE1 has been identified as a p53 target gene involved in the DNA damage response. In this study, we found that Pierce1-null mice exhibit severe laterality defects, including situs inversus totalis and heterotaxy with randomized situs and left and right isomerisms. The spectrum of laterality defects was closely correlated with randomized expression of Nodal and its downstream genes, Lefty1/2 and Pitx2. The phenotype of Pierce1-null mice most closely resembled that of mutant mice with impaired ciliogenesis and/or ciliary motility of the node. We also found the loss of asymmetric expression of Cerl2, the earliest flow-responding gene in the node of Pierce1-null embryos. The results suggest that Pierce1-null embryos have defects in generating a symmetry breaking signal including leftward nodal flow. This is the first report implicating a role for PIERCE1 in the symmetry-breaking step of left-right asymmetry specification.1110Ysciescopu

    Determination of the Loading Mode Dependence of the Proportionality Parameter for the Tearing Energy of Embedded Flaws in Elastomers Under Multiaxial Deformations

    Get PDF
    In this paper, the relationship between the tearing energy and the far-field cracking energy density (CED) is evaluated for an embedded penny-shaped flaw in a 3D elastomer body under a range of loading modes. A 3D finite element model of the system is used to develop a computational-based fracture mechanics approach which is used to evaluate the tearing energy at the crack in different multiaxial loading states. By analysing the tearing energy’s relationship to the far-field CED, the proportionality parameter in the CED formulation is found to be a function of stretch and biaxiality. Using a definition of biaxiality that gives a unique value for each loading mode, the proportionality parameter becomes a linear function of stretch and biaxiality. Tearing energies predicted through the resulting equation show excellent agreement to those calculated computationally

    Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family

    Get PDF
    BACKGROUND: A chicken egg contains several biotin-binding proteins (BBPs), whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. RESULTS: Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. CONCLUSION: We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins

    Self-ordered TiO2 quantum dot array prepared via anodic oxidation

    Get PDF
    The template-based methods belong to low-cost and rapid preparation techniques for various nanostructures like nanowires, nanotubes, and nanodots or even quantum dots [QDs]. The nanostructured surfaces with QDs are very promising in the application as a sensor array, also called 'fluorescence array detector.' In particular, this new sensing approach is suitable for the detection of various biomolecules (DNA, proteins) in vitro (in clinical diagnostics) as well as for in vivo imaging

    Local potential fluctuation of topological surface states in Bi1.5Sb0.5Te1.7Se1.3 observed by Landau level spectroscopy

    Get PDF
    We report the local observation of the band structure of topological surface states in Bi1.5Sb0.5Te1.7Se1.3 using scanning tunneling microscopy/spectroscopy (STM/STS). The energy-momentum dispersion relation is locally deduced by extracting the Landau level (LL) energies, which are formed in a high magnetic field, from the STS data. Spatial variation of LLs revealed a shift of the Dirac point energy at the nanometer scale. The structure of the potential fluctuation was not correlated with the topography, which indicated that the Te/Se substitution did not induce the potential shift because of their same valence. The results show that disorders from the Te/Se substitution at the surface do not induce any localized charged states and do not affect topological surface states. (C) 2016 AIP Publishing LLC.open114sciescopu

    Structural Basis for Certain Naturally Occurring Bioflavonoids to Function as Reducing Co-Substrates of Cyclooxygenase I and II

    Get PDF
    Recent studies showed that some of the dietary bioflavonoids can strongly stimulate the catalytic activity of cyclooxygenase (COX) I and II in vitro and in vivo, presumably by facilitating enzyme re-activation. In this study, we sought to understand the structural basis of COX activation by these dietary compounds.A combination of molecular modeling studies, biochemical analysis and site-directed mutagenesis assay was used as research tools. Three-dimensional quantitative structure-activity relationship analysis (QSAR/CoMFA) predicted that the ability of bioflavonoids to activate COX I and II depends heavily on their B-ring structure, a moiety known to be associated with strong antioxidant ability. Using the homology modeling and docking approaches, we identified the peroxidase active site of COX I and II as the binding site for bioflavonoids. Upon binding to this site, bioflavonoid can directly interact with hematin of the COX enzyme and facilitate the electron transfer from bioflavonoid to hematin. The docking results were verified by biochemical analysis, which reveals that when the cyclooxygenase activity of COXs is inhibited by covalent modification, myricetin can still stimulate the conversion of PGG(2) to PGE(2), a reaction selectively catalyzed by the peroxidase activity. Using the site-directed mutagenesis analysis, we confirmed that Q189 at the peroxidase site of COX II is essential for bioflavonoids to bind and re-activate its catalytic activity.These findings provide the structural basis for bioflavonoids to function as high-affinity reducing co-substrates of COXs through binding to the peroxidase active site, facilitating electron transfer and enzyme re-activation

    The major chloroplast envelope polypeptide is the phosphate translocator and not the protein import receptor

    Get PDF
    DURING photosynthetic CO2 fixation, fixed carbon is exported from the chloroplasts in the form of triose phosphate by the chloroplast phosphate translocator, which is the principal polypeptide (E29) from spinach chloroplast envelopes1. We have sequenced this nuclear-coded envelope membrane protein from both spinach and pea chloroplasts2,3. An envelope membrane protein, E30, has been identified as a possible receptor for protein import into pea chloroplasts using an anti-idiotypic antibody approach4–6; antibodies raised against purified E30 inhibited binding and import of proteins into chloroplasts7. The amino-acid sequence of E30 deduced from its complementary DNA7 turned out to be highly homologous to that of E29, assigned by us as the spinach phosphate translocator2, and was identical to the corresponding polypeptide from pea chloroplasts3. Differences in the binding properties to hydroxylapatite of £30 and the phosphate translocator suggested that E30 was not responsible for the chloroplast phosphate-transport activity but was the chloroplast import receptor7. Here we present evidence that argues against this and which identifies E30 as the chloroplast phosphate translocator
    corecore