247 research outputs found

    Fabrication of pyramidal probes with various periodic patterns and a single nanopore

    Get PDF
    The nanometer-scale patterned pyramidal probe with an electron beam-induced nanopore on the pyramid apex is an excellent candidate for an optical biosensor. The nanoapertures surrounded with various periodic groove patterns on the pyramid sides were fabricated using a focused ion beam technique, where the optical characteristics of the fabricated apertures with rectangular, circular, and elliptical groove patterns were investigated. The elliptical groove patterns on the pyramid were designed to maintain an identical distance between the grooves and the apex for the surface waves and, among the three patterns, the authors observed the highest optical transmission from the elliptically patterned pyramidal probe. A 103-fold increase of the transmitted optical intensity was observed after patterning with elliptical grooves, even without an aperture on the pyramid apex. The nanopore on the apex of the pyramid was fabricated using electron beam irradiation and was optically characterized

    The ancient phosphatidylinositol 3-kinase signaling system is a master regulator of energy and carbon metabolism in algae

    Get PDF
    Algae undergo a complete metabolic transformation under stress by arresting cell growth, inducing autophagy and hyperaccumulating biofuel precursors such as triacylglycerols and starch. However, the regulatory mechanisms behind this stress-induced transformation are still unclear. Here, we use biochemical, mutational, and “omics” approaches to demonstrate that PI3K signaling mediates the homeostasis of energy molecules and influences carbon metabolism in algae. In Chlamydomonas reinhardtii, the inhibition and knockdown (KD) of algal class III PI3K led to significantly decreased cell growth, altered cell morphology, and higher lipid and starch contents. Lipid profiling of wild-type and PI3K KD lines showed significantly reduced membrane lipid breakdown under nitrogen starvation (-N) in the KD. RNA-seq and network analyses showed that under -N conditions, the KD line carried out lipogenesis rather than lipid hydrolysis by initiating de novo fatty acid biosynthesis, which was supported by tricarboxylic acid cycle down-regulation and via acetyl-CoA synthesis from glycolysis. Remarkably, autophagic responses did not have primacy over inositide signaling in algae, unlike in mammals and vascular plants. The mutant displayed a fundamental shift in intracellular energy flux, analogous to that in tumor cells. The high free fatty acid levels and reduced mitochondrial ATP generation led to decreased cell viability. These results indicate that the PI3K signal transduction pathway is the metabolic gatekeeper restraining biofuel yields, thus maintaining fitness and viability under stress in algae. This study demonstrates the existence of homeostasis between starch and lipid synthesis controlled by lipid signaling in algae and expands our understanding of such processes, with biotechnological and evolutionary implications.Ministry of Science, ICT and Future Planning 2015M3A6A2065697Ministry of Oceans and Fisheries 2015018

    Lapatinib, a Dual EGFR and HER2 Tyrosine Kinase Inhibitor, Downregulates Thymidylate Synthase by Inhibiting the Nuclear Translocation of EGFR and HER2

    Get PDF
    Epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) has been shown to exert a synergistic antitumor effect when combined with fluoropyrimidine. This synergy may be attributable to the downregulation of thymidylate synthase (TS), which is frequently overexpressed in fluoropyrimidine-resistant cancer cells. However, the molecular mechanism underlying the downregulation of TS has yet to be clearly elucidated.In this study, we demonstrate that lapatinib, a dual TKI of EGFR and HER2 downregulates TS via inhibition of the nuclear translocation of EGFR and HER2. From our cDNA microarray experiments, we determined that a variety of nucleotide synthesis-related genes, including TS, were downregulated with lapatinib, and this was apparent in HER2-amplified cells. Targeted and pharmacologic inhibition assays confirmed that the dual inhibition of EGFR and HER2 is required for the more effective reduction of TS as compared to what was observed with gefitinib or trasutuzumab alone. Additionally, we determined that co-transfected EGFR and HER2 activate the TS gene promoter more profoundly than do either EGFR or HER2 alone. The translocation of EGFR and HER2 into the nucleus and the subsequent activation of the TS promoter were inhibited by lapatinib.These results demonstrate that lapatinib inhibits the nuclear translocation of EGFR and HER2 and downregulates TS, thus sensitizing cancer cells to fluoropyrimidine

    Acute Oral Poisoning Due to Chloracetanilide Herbicides

    Get PDF
    Chloracetanilide herbicides (alachlor, butachlor, metachlor) are used widely. Although there are much data about chronic low dose exposure to chloracetanilide in humans and animals, there are few data about acute chloracetanilide poisoning in humans. This study investigated the clinical feature of patients following acute oral exposure to chloracetanilide. We retrospectively reviewed the data on the patients who were admitted to two university hospitals from January 2006 to December 2010. Thirty-five patients were enrolled. Among them, 28, 5, and 2 cases of acute alachlor, metachlor, butachlor poisoning were included. The mean age was 49.8 ± 15.4 yr. The poison severity score (PSS) was 17 (48.6%), 10 (28.6%), 5 (14.3%), 2 (5.7%), and 1 (2.9%) patients with a PSS of 0, 1, 2, 3, and 4, respectively. The age was higher for the symptomatic patients (1-4 PSS) than that for the asymptomatic patients (0 PSS) (43.6 ± 15.2 vs 55.7 ± 13.5). The arterial blood HCO3 ¯ was lower in the symptomatic patients (1-4 PSS) than that in the asymptomatic patients (0 PSS). Three patients were a comatous. One patient died 24 hr after the exposure. In conclusion, although chloracetanilide poisoning is usually of low toxicity, elder patients with central nervous system symptoms should be closely monitored and cared after oral exposure

    Role of kif2c, A Gene Related to ALL Relapse, in Embryonic Hematopoiesis in Zebrafish

    Get PDF
    Relapse of acute lymphoblastic leukemia (ALL) is dangerous and it worsens the prognosis of patients; however, prognostic markers or therapeutic targets for ALL remain unknown. In the present study, using databases such as TARGET, GSE60926 and GSE28460, we determined that KIF2C and its binding partner, KIF18B are overexpressed in patients with relapsed ALL compared to that in patients diagnosed with ALL for the first time. As 50% of the residues are exactly the same and the signature domain of KIF2C is highly conserved between human and zebrafish, we used zebrafish embryos as a model to investigate the function of kif2c in vivo. We determined that kif2c is necessary for lymphopoiesis in zebrafish embryos. Additionally, we observed that kif2c is not related to differentiation of HSCs; however, it is important for the maintenance of HSCs as it provides survival signals to HSCs. These results imply that the ALL relapse-related gene KIF2C is linked to the survival of HSCs. In conclusion, we suggest that KIF2C can serve as a novel therapeutic target for relapsed ALL
    corecore