5 research outputs found

    Genome sequences of five African swine fever virus genotype IX isolates from domestic pigs in Uganda

    Get PDF
    Complete genome sequences of five African swine fever virus isolates were determined directly from clinical material obtained from domestic pigs in Uganda. Four sequences were essentially identical to each other, and all were closely related to the only known genome sequence of p72 genotype IX

    Genome sequences of five African swine fever virus genotype IX isolates from domestic pigs in Uganda

    Get PDF
    Complete genome sequences of five African swine fever virus isolates were determined directly from clinical material obtained from domestic pigs in Uganda. Four sequences were essentially identical to each other, and all were closely related to the only known genome sequence of p72 genotype IX

    Comparison of three methods to assess the potential for bushpig-domestic pig interactions at the wildlife—livestock interface in Uganda

    Get PDF
    Bushpigs (Potamochoerus larvatus) are considered a nuisance to farmers because of their crop raiding habits. Through their incursions into farmlands, they may interact with free-ranging domestic pigs and potentially cause transmission of infectious diseases such as African Swine Fever (ASF). The role of the bushpig in the epidemiology of ASF is poorly known and one of the gaps of knowledge is precisely the nature of interaction between bushpigs and domestic pigs. Thus, in this study, we investigated the frequency of bushpig visits to crop fields in rural communities where ASF is endemic, at the edge of a wildlife protected area in northwestern Uganda, to better understand the potential for interaction and disease transmission. We used three methods (questionnaires, camera traps, and observations for tracks) to assess bushpig visits to farmland. These methods were implemented concurrently in 28 farms during rainy and dry seasons. The results obtained by each of the three methods were analyzed by generalized linear mixed models. Potential risk factors including crop type, season, and landscape characteristics related to bushpig ecology were tested as explanatory variables. A generalized linear model and the Kendall test were used to compare the results and consistency of the frequency values obtained by the three methods. A high percentage (75%) of interviewed farmers reported visits from bushpigs in 29.6% of assessed crops (n = 145), and a frequency of 0.014 +/−0.05 visits per night was obtained through camera-trapping. Bushpig tracks were detected in 36% of sessions of observation. Cassava (Manihot esculenta) and groundnut (Arachis hypogaea L.) crop fields were the most visited, and these visits were more common during the rainy than the dry season. Distances from crop sites to the boundary of the protected area and to the river also influenced visit frequency. Camera-trapping was the least sensitive method while questionnaires and track observations presented consistent and complementary results to characterize spatial and temporal visits of bushpig into the crop fields. Evidence from our study shows that when used in combination, these methods can provide useful data to improve our understanding of the interactions between bushpigs and domestic pigs at the wildlife-domestic interface

    Spatial-Temporal Movements of Free Ranging Pigs at the Wildlife-Livestock Interface of Murchison Falls National Park, Uganda: Potential of Disease Control at a Local Scale

    No full text
    International audienceIn many Ugandan rural communities, pigs are generally kept under traditional smallholder systems without basic biosecurity measures in place. In some instances, these systems are at the livestock-wildlife interface, as it is the case in Nwoya district, which is bordered by Murchison Falls National Park (MFNP). This pig system has potential for the maintenance and transmission of pathogens like African swine fever (ASF) between different herds, and also with wild pigs (warthogs and bushpigs). In this paper, we describe the spatial and temporal pattern of the movements of free ranging domestic pigs in a rural setting in Northern Uganda where ASF is endemic. We also determine their use of habitat to highlight the potential interaction hotspots between domestic pigs and between domestic and wild pig populations. We fitted 10 free-ranging domestic pigs owned by different homesteads with GPS harnesses during rainy and dry seasons. The pig home range, daily distance, activity pattern and habitat use were calculated. Our results show that the maximum area covered (MCP 100%) by the pigs varied between 35,965 and 475,077 m 2 . The core area varied from 1,317 to 50,769 m 2 . The pigs' home ranges were significantly bigger during the dry season than during the rainy season (Wilcoxon test, W = 22, p = 0.04). The mean full day (24 h) distance was longer in the dry season than in the rainy season (Student test, t = 2.7, p = 0.03). The pigs were mostly located within their own homestead, but they also used other homesteads, grass and crop fields. This study highlights that free-ranging domestic pigs may cover a wide area, especially during the dry season. Interestingly, the home range of pigs from different herds may overlap with areas used by wild pigs which share crops and other resources in this area. This study provides insights into a better understanding of the potential for spread of diseases such as ASF at small-scale and can be used to raise awareness of such risks and to better target implementation of preventive measures

    Comparison of three methods to assess the potential for bushpig-domestic pig interactions at the wildlife-livestock interface in Uganda

    No full text
    Bushpigs (Potamochoerus larvatus) are considered a nuisance to farmers because of their crop raiding habits. Through their incursions into farmlands, they may interact with free-ranging domestic pigs and potentially cause transmission of infectious diseases such as African Swine Fever (ASF). The role of the bushpig in the epidemiology of ASF is poorly known and one of the gaps of knowledge is precisely the nature of interaction between bushpigs and domestic pigs. Thus, in this study, we investigated the frequency of bushpig visits to crop fields in rural communities where ASF is endemic, at the edge of a wildlife protected area in northwestern Uganda, to better understand the potential for interaction and disease transmission. We used three methods (questionnaires, camera traps, and observations for tracks) to assess bushpig visits to farmland. These methods were implemented concurrently in 28 farms during rainy and dry seasons. The results obtained by each of the three methods were analyzed by generalized linear mixed models. Potential risk factors including crop type, season, and landscape characteristics related to bushpig ecology were tested as explanatory variables. A generalized linear model and the Kendall test were used to compare the results and consistency of the frequency values obtained by the three methods. A high percentage (75%) of interviewed farmers reported visits from bushpigs in 29.6% of assessed crops (n = 145), and a frequency of 0.014 +/−0.05 visits per night was obtained through camera-trapping. Bushpig tracks were detected in 36% of sessions of observation. Cassava (Manihot esculenta) and groundnut (Arachis hypogaea L.) crop fields were the most visited, and these visits were more common during the rainy than the dry season. Distances from crop sites to the boundary of the protected area and to the river also influenced visit frequency. Camera-trapping was the least sensitive method while questionnaires and track observations presented consistent and complementary results to characterize spatial and temporal visits of bushpig into the crop fields. Evidence from our study shows that when used in combination, these methods can provide useful data to improve our understanding of the interactions between bushpigs and domestic pigs at the wildlife-domestic interface.APHIS (US Department of Agriculture, Animal and Plant Health Inspection Service, APHIS Agreement No. 13-7440-0989-GR) Wellcome trust (Grant 105684/Z/14/Z) and French Embassy in Uganda (Convention de subvention 10/10/2016. Appui CIRAD 185UGA0079).https://www.frontiersin.org/journals/veterinary-science#am2019Production Animal Studie
    corecore