21 research outputs found

    Comparative Evaluation of Mobile Forensic Tools

    Get PDF
    The rapid rise in the technology today has brought to limelight mobile devices which are now being used as a tool to commit crime. Therefore, proper steps need to be ensured for Confidentiality, Integrity, Authenticity and legal acquisition of any form of digital evidence from the mobile devices. This study evaluates some mobile forensic tools that were developed mainly for mobile devices memory and SIM cards. An experiment was designed with five android phones with different Operating System. Four tools were used to find out the capability and efficiency of the tools when used on the sampled phones. This would help the forensic investigator to know the type of tools that will be suitable for each phone to be investigated for acquiring digital evidence. The evaluation result showed that AccessData FTK imager and Paraben device seizure performs better than Encase and Mobiledit. The experimental result shows that, Encase could detect the unallocated space on the mobile deice but could retrieve an deleted data

    Primary stroke prevention worldwide : translating evidence into action

    Get PDF
    Funding Information: The stroke services survey reported in this publication was partly supported by World Stroke Organization and Auckland University of Technology. VLF was partly supported by the grants received from the Health Research Council of New Zealand. MOO was supported by the US National Institutes of Health (SIREN U54 HG007479) under the H3Africa initiative and SIBS Genomics (R01NS107900, R01NS107900-02S1, R01NS115944-01, 3U24HG009780-03S5, and 1R01NS114045-01), Sub-Saharan Africa Conference on Stroke Conference (1R13NS115395-01A1), and Training Africans to Lead and Execute Neurological Trials & Studies (D43TW012030). AGT was supported by the Australian National Health and Medical Research Council. SLG was supported by a National Heart Foundation of Australia Future Leader Fellowship and an Australian National Health and Medical Research Council synergy grant. We thank Anita Arsovska (University Clinic of Neurology, Skopje, North Macedonia), Manoj Bohara (HAMS Hospital, Kathmandu, Nepal), Denis ?erimagi? (Poliklinika Glavi?, Dubrovnik, Croatia), Manuel Correia (Hospital de Santo Ant?nio, Porto, Portugal), Daissy Liliana Mora Cuervo (Hospital Moinhos de Vento, Porto Alegre, Brazil), Anna Cz?onkowska (Institute of Psychiatry and Neurology, Warsaw, Poland), Gloria Ekeng (Stroke Care International, Dartford, UK), Jo?o Sargento-Freitas (Centro Hospitalar e Universit?rio de Coimbra, Coimbra, Portugal), Yuriy Flomin (MC Universal Clinic Oberig, Kyiv, Ukraine), Mehari Gebreyohanns (UT Southwestern Medical Centre, Dallas, TX, USA), Ivete Pillo Gon?alves (Hospital S?o Jos? do Avai, Itaperuna, Brazil), Claiborne Johnston (Dell Medical School, University of Texas, Austin, TX, USA), Kristaps Jurj?ns (P Stradins Clinical University Hospital, Riga, Latvia), Rizwan Kalani (University of Washington, Seattle, WA, USA), Grzegorz Kozera (Medical University of Gda?sk, Gda?sk, Poland), Kursad Kutluk (Dokuz Eylul University, ?zmir, Turkey), Branko Malojcic (University Hospital Centre Zagreb, Zagreb, Croatia), Micha? Maluchnik (Ministry of Health, Warsaw, Poland), Evija Migl?ne (P Stradins Clinical University Hospital, Riga, Latvia), Cassandra Ocampo (University of Botswana, Princess Marina Hospital, Botswana), Louise Shaw (Royal United Hospitals Bath NHS Foundation Trust, Bath, UK), Lekhjung Thapa (Upendra Devkota Memorial-National Institute of Neurological and Allied Sciences, Kathmandu, Nepal), Bogdan Wojtyniak (National Institute of Public Health, Warsaw, Poland), Jie Yang (First Affiliated Hospital of Chengdu Medical College, Chengdu, China), and Tomasz Zdrojewski (Medical University of Gda?sk, Gda?sk, Poland) for their comments on early draft of the manuscript. The views expressed in this article are solely the responsibility of the authors and they do not necessarily reflect the views, decisions, or policies of the institution with which they are affiliated. We thank WSO for funding. The funder had no role in the design, data collection, analysis and interpretation of the study results, writing of the report, or the decision to submit the study results for publication. Funding Information: The stroke services survey reported in this publication was partly supported by World Stroke Organization and Auckland University of Technology. VLF was partly supported by the grants received from the Health Research Council of New Zealand. MOO was supported by the US National Institutes of Health (SIREN U54 HG007479) under the H3Africa initiative and SIBS Genomics (R01NS107900, R01NS107900-02S1, R01NS115944-01, 3U24HG009780-03S5, and 1R01NS114045-01), Sub-Saharan Africa Conference on Stroke Conference (1R13NS115395-01A1), and Training Africans to Lead and Execute Neurological Trials & Studies (D43TW012030). AGT was supported by the Australian National Health and Medical Research Council. SLG was supported by a National Heart Foundation of Australia Future Leader Fellowship and an Australian National Health and Medical Research Council synergy grant. We thank Anita Arsovska (University Clinic of Neurology, Skopje, North Macedonia), Manoj Bohara (HAMS Hospital, Kathmandu, Nepal), Denis Čerimagić (Poliklinika Glavić, Dubrovnik, Croatia), Manuel Correia (Hospital de Santo António, Porto, Portugal), Daissy Liliana Mora Cuervo (Hospital Moinhos de Vento, Porto Alegre, Brazil), Anna Członkowska (Institute of Psychiatry and Neurology, Warsaw, Poland), Gloria Ekeng (Stroke Care International, Dartford, UK), João Sargento-Freitas (Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal), Yuriy Flomin (MC Universal Clinic Oberig, Kyiv, Ukraine), Mehari Gebreyohanns (UT Southwestern Medical Centre, Dallas, TX, USA), Ivete Pillo Gonçalves (Hospital São José do Avai, Itaperuna, Brazil), Claiborne Johnston (Dell Medical School, University of Texas, Austin, TX, USA), Kristaps Jurjāns (P Stradins Clinical University Hospital, Riga, Latvia), Rizwan Kalani (University of Washington, Seattle, WA, USA), Grzegorz Kozera (Medical University of Gdańsk, Gdańsk, Poland), Kursad Kutluk (Dokuz Eylul University, İzmir, Turkey), Branko Malojcic (University Hospital Centre Zagreb, Zagreb, Croatia), Michał Maluchnik (Ministry of Health, Warsaw, Poland), Evija Miglāne (P Stradins Clinical University Hospital, Riga, Latvia), Cassandra Ocampo (University of Botswana, Princess Marina Hospital, Botswana), Louise Shaw (Royal United Hospitals Bath NHS Foundation Trust, Bath, UK), Lekhjung Thapa (Upendra Devkota Memorial-National Institute of Neurological and Allied Sciences, Kathmandu, Nepal), Bogdan Wojtyniak (National Institute of Public Health, Warsaw, Poland), Jie Yang (First Affiliated Hospital of Chengdu Medical College, Chengdu, China), and Tomasz Zdrojewski (Medical University of Gdańsk, Gdańsk, Poland) for their comments on early draft of the manuscript. The views expressed in this article are solely the responsibility of the authors and they do not necessarily reflect the views, decisions, or policies of the institution with which they are affiliated. We thank WSO for funding. The funder had no role in the design, data collection, analysis and interpretation of the study results, writing of the report, or the decision to submit the study results for publication. Funding Information: VLF declares that the PreventS web app and Stroke Riskometer app are owned and copyrighted by Auckland University of Technology; has received grants from the Brain Research New Zealand Centre of Research Excellence (16/STH/36), Australian National Health and Medical Research Council (NHMRC; APP1182071), and World Stroke Organization (WSO); is an executive committee member of WSO, honorary medical director of Stroke Central New Zealand, and CEO of New Zealand Stroke Education charitable Trust. AGT declares funding from NHMRC (GNT1042600, GNT1122455, GNT1171966, GNT1143155, and GNT1182017), Stroke Foundation Australia (SG1807), and Heart Foundation Australia (VG102282); and board membership of the Stroke Foundation (Australia). SLG is funded by the National Health Foundation of Australia (Future Leader Fellowship 102061) and NHMRC (GNT1182071, GNT1143155, and GNT1128373). RM is supported by the Implementation Research Network in Stroke Care Quality of the European Cooperation in Science and Technology (project CA18118) and by the IRIS-TEPUS project from the inter-excellence inter-cost programme of the Ministry of Education, Youth and Sports of the Czech Republic (project LTC20051). BN declares receiving fees for data management committee work for SOCRATES and THALES trials for AstraZeneca and fees for data management committee work for NAVIGATE-ESUS trial from Bayer. All other authors declare no competing interests. Publisher Copyright: © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseStroke is the second leading cause of death and the third leading cause of disability worldwide and its burden is increasing rapidly in low-income and middle-income countries, many of which are unable to face the challenges it imposes. In this Health Policy paper on primary stroke prevention, we provide an overview of the current situation regarding primary prevention services, estimate the cost of stroke and stroke prevention, and identify deficiencies in existing guidelines and gaps in primary prevention. We also offer a set of pragmatic solutions for implementation of primary stroke prevention, with an emphasis on the role of governments and population-wide strategies, including task-shifting and sharing and health system re-engineering. Implementation of primary stroke prevention involves patients, health professionals, funders, policy makers, implementation partners, and the entire population along the life course.publishersversionPeer reviewe

    Effects Of Mishenland Anti-diabetic Herb On The Kidney Of Streptozotocin-induced Diabetic Adult Wistar Rats

    Full text link
    This study investigates some of the effects of Mischeland anti-diabetic herb in the kidney of diabetic adult wistar rats. Mishenland is an herbal mixture consisting of alkaloids, anthraquinone, cylogenetic glycosides, saponin and tannins. Diabetes is a serious lifelong multi-system disorder of glucose metabolism in the body. It is a condition characterized by high blood sugar level that results from defect in insulin secretion, or action, or both. 36 adult wistar rats of both sexes weighing between 195g – 280g were randomly divided into three groups; A, B and C. Diabetes mellitus was induced in group B and C rats by single intraperitoneal injection of streptozotocin (STZ) at a dosage of 70mg/Kg b.w, freshly dissolved in 1ml citrate buffer solution at pH of 4.5. The control rats (group A) were injected with only citrate buffer solution intraperitoneally. At the beginning of the 7th week post STZ injection, mischeland anti-diabetic herb was administered at a dosage of 0.92g/Kg b.w for rats in group C with the diabetic group B rats left untreated. The animals in group C were further subdivided into C1, C2 and C3. Group C1 received a normal dose of 0.92g/Kg b.w, C2 animals were administered additional 100% of C1 dosage (serving as high dose) and group C3 received 50% of group C1 dosage which served as low dose. This mishenland anti-diabetic herb treatment lasted for another sixweeks, post STZ induction. The result shows that the mean body weight of diabetic group (Group B) was significantly reduced compared tothe control group A. It was also observed that the treated groups (C1, C2 and C3) regained a significant amount of body weight, following treatment with mishenland herb. In addition, it was also observed that the increased glucose level (Indiabetic group B rats) was significantly reversed in the mishenland treated group C rats. G6PDH and LDH levels in the kidney and blood of treated rats were significantly increased, compared to their low levels in diabetic group B rats. This experimental work reveals mishenland anti-diabetic herb as a promising therapy for the reversal of the dreadful conditions caused by diabetes if further researched up on. All results were expressed as Mean ± Standard Deviation (S.D) for each group. All grouped data were statistically evaluated using SPSS 15.0 software. Hypothesis testing methods included the independent – samples t–test. Statisticalsignificance was set at p<0.05

    Solid state synthesis, spectroscopic and X-ray studies of metal complexes of 2-picolinic acid and vapochromic behavior of [Co(Pic)2(H2O)2]$2H2O

    No full text
    Three compounds, [Cu(Pic)2(H2O)] (1a), [M(Pic)2(H2O)2]2H2O](M¼Co(2a),Zn(3a),Pic¼2picolinicacid)wereobtainedbysolventfreesynthesisthroughgrindingofmetalacetatesaltwith2picolinicacid.Favorablecomparisonofsolventfreewithsolutionbasedmethodof1b,2band3bwasobserved.Goodresemblanceofidentityofcompoundsobtainedthroughthetwomethodswasconfirmedbyelementalanalysis,spectroscopictechniques(UVVisandFTIR),TGAandPXRD.Thesinglecrystaldiffractiondatafor[Co(Pic)2(H2O)2]2H2O] (M¼Co (2a), Zn (3a), Pic ¼ 2-picolinic acid) were obtained by solvent-free synthesis through grinding of metal acetate salt with 2-picolinic acid. Favorable comparison of solvent-free with solution based method of 1b, 2b and 3b was observed. Good resemblance of identity of compounds obtained through the two methods was confirmed by elemental analysis, spectroscopic techniques (UV-Vis and FTIR), TGA and PXRD. The single crystal diffraction data for [Co(Pic)2(H2O)2]2H2O obtained from the Cambridge structure database (CSD), its PXRD simulated patterns closely matched that of complex 2a by solvent-free synthesis. Vapochromic behavior of this complex was studied using colour change, FT-IR, TGA, PXRD and solid state UV-visible spectroscopies. This complex generated specific colour which is also evident in the shifting of the vibrational frequencies (nO-H and n C¼O bands). The resulting inclusion compounds have different colours depending on the solvent used. In addition, exposure of the resultant inclusion compounds to ambient environment or heating for a few minutes regenerate the original material without degradation even after exposure/heating cycles as evident from TGA/DTG thermogram

    Gaps in guidelines for the management of diabetes in low- and middle-income versus high-income countriesda systematic review

    No full text
    OBJECTIVE: The extentto which diabetes (DM) practice guidelines, often basedon evidence from high-income countries (HIC), can be implemented to improve outcomes in low- and middle-income countries (LMIC) is a critical challenge. We carried out a systematic review to compare type 2 DM guidelines in individual LMIC versus HIC over the past decade to identify aspects that could be improved to facilitate implementation. RESEARCH DESIGN AND METHODS: Eligible guidelines were sought from online databases and websites of diabetes associations and ministries of health. Type 2 DM guidelines published between 2006 and 2016 with accessible full publications were included. Each of the 54 eligible guidelines was assessed for compliance with the Institute of Medicine (IOM) standards, coverage of the cardiovascular quadrangle (epidemiologic surveillance, prevention, acute care, and rehabilitation), translatability, and its target audiences. RESULTS: Most LMIC guidelines were inadequate in terms of applicability, clarity, and dissemination planaswellassocioeconomic and ethical-legal contextualization.LMIC guidelines targeted mainly health care providers, with only a few including patients (7%), payers (11%), and policy makers (18%) as their target audiences. Compared with HIC guidelines, the spectrum of DM clinical care addressed by LMIC guidelines was narrow. Most guidelines from the LMIC complied with less than half of the IOM standards, with 12% of the LMIC guidelines satisfying at least four IOM criteria as opposed to 60% of the HIC guidelines (P < 0.001). CONCLUSIONS: A new approachto the contextualization, content development, and deliveryofLMIC guidelines is needed to improve outcomes. © 2018 by the American Diabetes Association
    corecore