12 research outputs found

    Ethnicity-specific epigenetic variation in naïve CD4+ T cells and the susceptibility to autoimmunity

    Get PDF
    Abstract Background Genetic and epigenetic variability contributes to the susceptibility and pathogenesis of autoimmune diseases. T cells play an important role in several autoimmune conditions, including lupus, which is more common and more severe in people of African descent. To investigate inherent epigenetic differences in T cells between ethnicities, we characterized genome-wide DNA methylation patterns in naïve CD4+ T cells in healthy African-Americans and European-Americans, and then confirmed our findings in lupus patients. Results Impressive ethnicity-specific clustering of DNA methylation profiling in naïve CD4+ T cells was revealed. Hypomethylated loci in healthy African-Americans were significantly enriched in pro-apoptotic and pro-inflammatory genes. We also found hypomethylated genes in African-Americans to be disproportionately related to autoimmune diseases including lupus. We then confirmed that these genes, such as IL32, CD226, CDKN1A, and PTPRN2 were similarly hypomethylated in lupus patients of African-American compared to European-American descent. Using patch DNA methylation and luciferase reporter constructs, we showed that methylation of the IL32 promoter region reduces gene expression in vitro. Importantly, bisulfite DNA sequencing demonstrated that cis-acting genetic variants within and directly disrupting CpG sites account for some ethnicity-specific variability in DNA methylation. Conclusion Ethnicity-specific inherited epigenetic susceptibility loci in CD4+ T cells provide clues to explain differences in the susceptibility to autoimmunity and possibly other T cell-related diseases between populations.http://deepblue.lib.umich.edu/bitstream/2027.42/116042/1/13072_2015_Article_37.pd

    Whole Exome Sequencing Identifies Rare Protein-Coding Variants in Behçet's Disease

    Get PDF
    Behçet's disease (BD) is a systemic inflammatory disease with an incompletely understood etiology. Despite the identification of multiple common genetic variants associated with BD, rare genetic variants have been less explored. We undertook this study to investigate the role of rare variants in BD by performing whole exome sequencing in BD patients of European descent. METHODS: Whole exome sequencing was performed in a discovery set comprising 14 German BD patients of European descent. For replication and validation, Sanger sequencing and Sequenom genotyping were performed in the discovery set and in 2 additional independent sets of 49 German BD patients and 129 Italian BD patients of European descent. Genetic association analysis was then performed in BD patients and 503 controls of European descent. Functional effects of associated genetic variants were assessed using bioinformatic approaches. RESULTS: Using whole exome sequencing, we identified 77 rare variants (in 74 genes) with predicted protein-damaging effects in BD. These variants were genotyped in 2 additional patient sets and then analyzed to reveal significant associations with BD at 2 genetic variants detected in all 3 patient sets that remained significant after Bonferroni correction. We detected genetic association between BD and LIMK2 (rs149034313), involved in regulating cytoskeletal reorganization, and between BD and NEIL1 (rs5745908), involved in base excision DNA repair (P = 3.22 × 10(-4) and P = 5.16 × 10(-4) , respectively). The LIMK2 association is a missense variant with predicted protein damage that may influence functional interactions with proteins involved in cytoskeletal regulation by Rho GTPase, inflammation mediated by chemokine and cytokine signaling pathways, T cell activation, and angiogenesis (Bonferroni-corrected P = 5.63 × 10(-14) , P = 7.29 × 10(-6) , P = 1.15 × 10(-5) , and P = 6.40 × 10(-3) , respectively). The genetic association in NEIL1 is a predicted splice donor variant that may introduce a deleterious intron retention and result in a noncoding transcript variant. CONCLUSION: We used whole exome sequencing in BD for the first time and identified 2 rare putative protein-damaging genetic variants associated with this disease. These genetic variants might influence cytoskeletal regulation and DNA repair mechanisms in BD and might provide further insight into increased leukocyte tissue infiltration and the role of oxidative stress in BD

    Neurology Escape Room: Games and Puzzles as Educational Tools

    Full text link
    Medical Schoolhttp://deepblue.lib.umich.edu/bitstream/2027.42/171735/1/Mikhail_Ognenovski_1.pd

    Ethnicity-specific epigenetic variation in naïve CD4+ T cells and the susceptibility to autoimmunity

    No full text
    BACKGROUND: Genetic and epigenetic variability contributes to the susceptibility and pathogenesis of autoimmune diseases. T cells play an important role in several autoimmune conditions, including lupus, which is more common and more severe in people of African descent. To investigate inherent epigenetic differences in T cells between ethnicities, we characterized genome-wide DNA methylation patterns in naïve CD4+ T cells in healthy African-Americans and European-Americans, and then confirmed our findings in lupus patients. RESULTS: Impressive ethnicity-specific clustering of DNA methylation profiling in naïve CD4+ T cells was revealed. Hypomethylated loci in healthy African-Americans were significantly enriched in pro-apoptotic and pro-inflammatory genes. We also found hypomethylated genes in African-Americans to be disproportionately related to autoimmune diseases including lupus. We then confirmed that these genes, such as IL32, CD226, CDKN1A, and PTPRN2 were similarly hypomethylated in lupus patients of African-American compared to European-American descent. Using patch DNA methylation and luciferase reporter constructs, we showed that methylation of the IL32 promoter region reduces gene expression in vitro. Importantly, bisulfite DNA sequencing demonstrated that cis-acting genetic variants within and directly disrupting CpG sites account for some ethnicity-specific variability in DNA methylation. CONCLUSION: Ethnicity-specific inherited epigenetic susceptibility loci in CD4+ T cells provide clues to explain differences in the susceptibility to autoimmunity and possibly other T cell-related diseases between populations

    CD4+CD28+KIR+CD11ahi T cells correlate with disease activity and are characterized by a pro-inflammatory epigenetic and transcriptional profile in lupus patients

    No full text
    OBJECTIVE: The goal of this study was to comprehensively characterize CD4+CD28+ T cells overexpressing CD11a and KIR genes, and examine the relationship between this T cell subset, genetic risk, and disease activity in lupus. METHODS: The size of the CD4+CD28+KIR+CD11ahi T cell subset was determined by flow cytometry, and total genetic risk for lupus was calculated in 105 female patients using 43 confirmed genetic susceptibility loci. Primary CD4+CD28+KIR+CD11ahi T cells were isolated from lupus patients or were induced from healthy individuals using 5-azacytidine. Genome-wide DNA methylation was analyzed using an array-based approach, and the transcriptome was assessed by RNA sequencing. Transcripts in the CDR3 region were used to assess the TCR repertoire. Chromatin accessibility was determined using ATAC-seq. RESULTS: A total of 31,019 differentially methylated sites were identified in induced KIR+CD11ahi T cells with \u3e99% being hypomethylated. RNA sequencing revealed a clear pro-inflammatory transcriptional profile. TCR repertoire analysis suggests less clonotype diversity in KIR+CD11ahi compared to autologous KIR-CD11alow T cells. Similarly, primary KIR+CD11ahi T cells isolated from lupus patients were hypomethylated and characterized by a pro-inflammatory chromatin structure. We show that the genetic risk for lupus was significantly higher in African-American compared to European-American lupus patients. The demethylated CD4+CD28+KIR+CD11ahi T cell subset size was a better predictor of disease activity in young (age ≤ 40) European-American patients independent of genetic risk. CONCLUSION: CD4+CD28+KIR+CD11ahi T cells are demethylated and characterized by pro-inflammatory epigenetic and transcriptional profiles in lupus. Eliminating these cells or blocking their pro-inflammatory characteristics might present a novel therapeutic approach for lupus
    corecore