1,363 research outputs found

    Quasar 3C 298: a test-case for meteoritic nanodiamond 3.5 µm emission

    Get PDF
    Aims. We calculate the dust emission expected at 3.43 and 3.53 µm if meteoritic (i.e. hydrogenated) nanodiamonds are responsible for most of the far-UV break observed in quasars. Methods. We integrate the UV flux that hydrogenated nanodiamonds must absorb to reproduce the far-UV break. Based on laboratory spectra of H-terminated diamond surfaces, we analyse the radiative energy budget and derive theoretically the IR emission profiles expected for possible C-H surface stretch modes of the diamonds. Results. Using as test case a spectrum of 3C 298 provided by the Spitzer Observatory, we do not find evidence of these emission bands. Conclusions. While diamonds without surface adsorbates remain a viable candidate for explaining the far-UV break observed in quasars, hydrogenated nanodiamonds appear to be ruled out, as they would give rise to IR emission bands, which have not been observed so far

    Preferential Lineage-Specific Differentiation of Osteoblast-Derived Induced Pluripotent Stem Cells into Osteoprogenitors

    Get PDF
    While induced pluripotent stem cells (iPSCs) hold great clinical promise, one hurdle that remains is the existence of a parental germ-layer memory in reprogrammed cells leading to preferential differentiation fates. While it is problematic for generating cells vastly different from the reprogrammed cells\u27 origins, it could be advantageous for the reliable generation of germ-layer specific cell types for future therapeutic use. Here we use human osteoblast-derived iPSCs (hOB-iPSCs) to generate induced osteoprogenitors (iOPs). Osteoblasts were successfully reprogrammed and demonstrated by endogenous upregulation of Oct4, Sox2, Nanog, TRA-1-81, TRA-16-1, SSEA3, and confirmatory hPSC Scorecard Algorithmic Assessment. The hOB-iPSCs formed embryoid bodies with cells of ectoderm and mesoderm but have low capacity to form endodermal cells. Differentiation into osteoprogenitors occurred within only 2-6 days, with a population doubling rate of less than 24 hrs; however, hOB-iPSC derived osteoprogenitors were only able to form osteogenic and chondrogenic cells but not adipogenic cells. Consistent with this, hOB-iOPs were found to have higher methylation of PPAR gamma but similar levels of methylation on the RUNX2 promoter. These data demonstrate that iPSCs can be generated from human osteoblasts, but variant methylation patterns affect their differentiation capacities. Therefore, epigenetic memory can be exploited for efficient generation of clinically relevant quantities of osteoprogenitor cells

    Dust Explosions and Collapsed Ductwork

    Get PDF
    PresentationOne of the more obvious consequences of a dust deflagration inside process equipment or a structure is the mechanical damage caused by shock (compression) waves. This overpressure damage is revealed through the displacement of equipment, the outward deformation or rupture of enclosures constructed of ductile materials, or the projection of missiles. However, a different type of damage is sometimes observed in the ductwork connecting process equipment. In particular, the ductwork is collapsed as if it were subjected to an external, rather than an internal pressure. The phenomenon that causes this collapse of thin-walled conduit is a gas dynamic process called an expansion wave. When a dust deflagration travels through a conduit, it accelerates and causing a rise in pressure. When the dust deflagration is vented (say through a deflagration vent), the discharge of the high pressure combustion products causes the formation of an expansion wave that travels in the reverse direction from the vent backwards. The expansion wave causes the pressure in the ductwork to fall below atmospheric pressure. The sub-atmospheric pressure, in turn, causes the ductwork to fail by buckling. In this study, we examine the gas dynamics of the expansion wave, demonstrate how to calculate the degree of pressure drop caused by the expansion wave, and illustrate the concept with case studies of dust explosions

    Screening of gunshot residues using desorption electrospray ionisation-mass spectrometry (DESI-MS)

    Full text link
    Several studies have indicated that there are potential environmental sources of particles resembling inorganic primer found in gunshot residues (GSR); as a consequence examiners are reluctant to unambiguously assign the origin of inorganic particles. If organic gunshot residues (OGSR) were found in combination with inorganic particles, the possibility of environmental sources could be potentially eliminated, thereby significantly enhancing the strength of the evidence.Methods have been previously described whereby GSR specimens can be analysed for the presence of OGSR or inorganic GRS (IGSR). However, no methods have been reported that allow the analysis of both OGSR and IGSR on the same specimen.Described in this article is a direct method using desorption electrospray ionisation-mass spectrometry (DESI-MS) for the detection of methyl centralite (MC), ethyl centralite (EC) and diphenylamine (DPA) on adhesive tape GSR stubs typically used for scanning electron microscopy-energy-dispersive X-ray (SEM-EDX) analysis. The optimisation of numerous parameters was conducted using an experimental design. The results indicate that direct analysis of these organic components of GSR is possible although some limitations were also identified.This initial investigation has also indicated that subjecting stubs to DESI analysis does not interfere with subsequent SEM-EDX analysis of primer residues; therefore the technique described herein allows a comprehensive examination of GSR that would be highly probative in the event that both OGSR and IGSR are detected in the same specimen. © 2011 Elsevier Ireland Ltd

    Accretion-Inhibited Star Formation in the Warm Molecular Disk of the Green-valley Elliptical Galaxy NGC 3226

    Get PDF
    We present archival Spitzer photometry and spectroscopy, and Herschel photometry, of the peculiar "Green Valley" elliptical galaxy NGC~3226. The galaxy, which contains a low-luminosity AGN, forms a pair with NGC~3227, and is shown to lie in a complex web of stellar and HI filaments. Imaging at 8 and 16μ\mum reveals a curved plume structure 3 kpc in extent, embedded within the core of the galaxy, and coincident with the termination of a 30 kpc-long HI tail. In-situ star formation associated with the IR plume is identified from narrow-band HST imaging. The end of the IR-plume coincides with a warm molecular hydrogen disk and dusty ring, containing 0.7-1.1 ×\times 107^7 M_{\odot} detected within the central kpc. Sensitive upper limits to the detection of cold molecular gas may indicate that a large fraction of the H2_2 is in a warm state. Photometry, derived from the UV to the far-IR, shows evidence for a low star formation rate of \sim0.04 M_{\odot} yr1^{-1} averaged over the last 100 Myrs. A mid-IR component to the Spectral Energy Distribution (SED) contributes \sim20%\% of the IR luminosity of the galaxy, and is consistent with emission associated with the AGN. The current measured star formation rate is insufficient to explain NGC3226's global UV-optical "green" colors via the resurgence of star formation in a "red and dead" galaxy. This form of "cold accretion" from a tidal stream would appear to be an inefficient way to rejuvenate early-type galaxies, and may actually inhibit star formation.Comment: Accepted for Publication ApJ Oct 201

    Embryonic Chicken Fibroblast Collagen Binding Proteins: Distribution, Role in Substratum Adhesion, and Relationship to Integrins

    Get PDF
    Collagen binding proteins (CBP) are hydrophobic, cell surface polypeptides, isolated by collagen affinity chromatography. Antibodies to CBPs inhibit the attachment of embryonic chicken heart fibroblasts to native type I collagen fibrils in a dose-dependent manner. The CBP antibodies also induce rounding and detachment of cells adherent to a planar substratum. This process of antibody-mediated substratum detachment resulted in a clustering of CBP and cell-associated extracellular matrix at the cell surface, and the rearrangement of filamentous actin. Other functional studies showed that cells grown within a three-dimensional gel of type I collagen cannot be immunostained at the cell surface with CBP antibodies. However, treatment of cultures with purified collagenase, unmasks immunoreactive sites and permits strong cell surface immunolabeling. This result suggests that collagen sterically blocks antibody access to CBP. Finally, we show that antibodies to CBP recognize purified avian integrin beta subunits; and that antibodies to avian integrins recognize a 100,000 Mr CBP. These data demonstrate that chicken embryonic fibroblasts possess surface polypeptides that mediate adhesion to type I collagen, and suggest that two of these proteins are related to the integrin family

    Quantification of the Thermal Hazard from Metallic and Organic Dust Flash Fires

    Get PDF
    PresentationAn in-house constructed nominally 20-L flash fire apparatus was used to evaluate and compare the flash fires fueled by an organic dust (non-dairy coffee creamer) a metal dust (aluminum) and a flammable gas (methane). Dispersion was achieved using an injection system similar to the injection systems found in standard Siwek 20-L combustion chambers and a 10-J spark igniter was used to ignite the fuels. A heat flux gauge, thermocouples, an Infrared video camera, and an HD video camera were all used to evaluate the severity of the flash fires. Multiple concentrations of dusts and a stoichiometric methane mixture were tested. All measurement methods showed reasonable agreement when ranking the severity of different deflagrations, but thermocouple and heat flux gauge measurements were sensitive to the position of the flame, leading to some inconsistency. IR video measurements provided fireball dimensions and growth rates, and relative temperatures for dust-fueled deflagration, but were unable to accurately assess the high-turbulence premixed methane flash fires due to the high burning velocities and 30 frames per second limitation. The IR camera was also limited to 1200o C, which is inadequate for the temperature of some metal dust deflagrations, including aluminum and requires adjustment of the material emissivity, which would require additional analysis and testing. Measurement strategies for a next-generation flash fire testing apparatus are proposed based on the results of this study

    The Viewing Angles of Broad Absorption Line Versus Unabsorbed Quasars

    Full text link
    It was recently shown that there is a significant difference in the radio spectral index distributions of broad absorption line (BAL) quasars and unabsorbed quasars, with an overabundance of BAL quasars with steeper radio spectra. This result suggests that source orientation does play into the presence or absence of BAL features. In this paper we provide more quantitative analysis of this result based on Monte-Carlo simulations. While the relationship between viewing angle and spectral index does indeed contain a lot of scatter, the spectral index distributions are different enough to overcome that intrinsic variation. Utilizing two different models of the relationship between spectral index and viewing angle, the simulations indicate that the difference in spectral index distributions can be explained by allowing BAL quasar viewing angles to extend about 10 degrees farther from the radio jet axis than non-BAL sources, though both can be seen at small angles. These results show that orientation cannot be the only factor determining whether BAL features are present, but it does play a role.Comment: Accepted for publication in Ap

    Shocked Molecular Hydrogen in the 3C 326 Radio Galaxy System

    Full text link
    The Spitzer spectrum of the giant FR II radio galaxy 3C 326 is dominated by very strong molecular hydrogen emission lines on a faint IR continuum. The H2 emission originates in the northern component of a double-galaxy system associated with 3C 326. The integrated luminosity in H2 pure-rotational lines is 8.0E41 erg/s, which corresponds to 17% of the 8-70 micron luminosity of the galaxy. A wide range of temperatures (125-1000 K) is measured from the H2 0-0 S(0)-S(7) transitions, leading to a warm H2 mass of 1.1E9 Msun. Low-excitation ionic forbidden emission lines are consistent with an optical LINER classification for the active nucleus, which is not luminous enough to power the observed H2 emission. The H2 could be shock-heated by the radio jets, but there is no direct indication of this. More likely, the H2 is shock-heated in a tidal accretion flow induced by interaction with the southern companion galaxy. The latter scenario is supported by an irregular morphology, tidal bridge, and possible tidal tail imaged with IRAC at 3-9 micron. Unlike ULIRGs, which in some cases exhibit H2 line luminosities of comparable strength, 3C 326 shows little star-formation activity (~0.1 Msun/yr). This may represent an important stage in galaxy evolution. Starburst activity and efficient accretion onto the central supermassive black hole may be delayed until the shock-heated H2 can kinematically settle and coolComment: 27 pages, 7 figures, accepted for publication in the Astrophysical Journa

    Accessible Bioprinting: Adaptation of a Low-Cost 3D-Printer for Precise Cell Placement and Stem Cell Differentiation

    Get PDF
    The precision and repeatability offered by computer-aided design and computer-numerically controlled techniques in biofabrication processes is quickly becoming an industry standard. However, many hurdles still exist before these techniques can be used in research laboratories for cellular and molecular biology applications. Extrusion-based bioprinting systems have been characterized by high development costs, injector clogging, difficulty achieving small cell number deposits, decreased cell viability, and altered cell function post-printing. To circumvent the high-price barrier to entry of conventional bioprinters, we designed and 3D printed components for the adaptation of an inexpensive \u27off-the-shelf\u27 commercially available 3D printer. We also demonstrate via goal based computer simulations that the needle geometries of conventional commercially standardized, \u27luer-lock\u27 syringe-needle systems cause many of the issues plaguing conventional bioprinters. To address these performance limitations we optimized flow within several microneedle geometries, which revealed a short tapered injector design with minimal cylindrical needle length was ideal to minimize cell strain and accretion. We then experimentally quantified these geometries using pulled glass microcapillary pipettes and our modified, low-cost 3D printer. This systems performance validated our models exhibiting: reduced clogging, single cell print resolution, and maintenance of cell viability without the use of a sacrificial vehicle. Using this system we show the successful printing of human induced pluripotent stem cells (hiPSCs) into Geltrex and note their retention of a pluripotent state 7 d post printing. We also show embryoid body differentiation of hiPSC by injection into differentiation conducive environments, wherein we observed continuous growth, emergence of various evaginations, and post-printing gene expression indicative of the presence of all three germ layers. These data demonstrate an accessible open-source 3D bioprinter capable of serving the needs of any laboratory interested in 3D cellular interactions and tissue engineering
    corecore