85 research outputs found

    A lack of freshwater reservoir effects in human radiocarbon dates in the Eneolithic to Iron Age in the Minusinsk Basin

    Get PDF
    A number of recent studies have highlighted the importance of freshwater reservoir effects (FRE) when dating human remains across large parts of Eurasia, including the Eurasian steppes. Here,we address this question in the context of the Early Bronze Age (Okunevo), Late Bronze Age (Karasuk) and Late Iron Age (Tashtyk culture) of the Minusinsk Basin, Southern Siberia. The issue is important given the large number of radiocarbon dates that have been published on human remains here, which have been used both to refine the cultural historical sequence (Svyatko et al. 2009), as well as to suggest a date of ca. 1400 BC for the appearance of millet agriculture (Svyatko et al. 2013). In these studies, it was argued that there was little or no freshwater reservoir effect to take into account, despite the likely consumption of freshwater fish. Subsequent work across the steppe raised a legitimate question concerning this assumption. Here, we present the first set of paired dates on late prehistoric humans and terrestrial fauna from the Minusinsk Basin, as well as data from modern fish for the region. The results, with one exception, show no clear evidence for a reservoir effect, with the human-fauna difference averaging −31 ± 95 14C years. Yet, dating of modern fish from the Yenisei River and its tributary Karasuk River does show a variable but significant FRE. Either this effect has changed radically over time, or the contribution of fish to human diets in the Minusinsk Basin was less than previously thought

    The question concerning human rights and human rightlessness: disposability and struggle in the Bhopal gas disaster

    Get PDF
    In the midst of concerns about diminishing political support for human rights, individuals and groups across the globe continue to invoke them in their diverse struggles against oppression and injustice. Yet both those concerned with the future of human rights and those who champion rights activism as essential to resistance, assume that human rights – as law, discourse and practices of rights claiming – can ameliorate rightlessness. In questioning this assumption, this article seeks also to reconceptualise rightlessness by engaging with contemporary discussions of disposability and social abandonment in an attempt to be attentive to forms of rightlessness co-emergent with the operations of global capital. Developing a heuristic analytics of rightlessness, it evaluates the relatively recent attempts to mobilise human rights as a frame for analysis and action in the campaigns for justice following the 3 December 1984 gas leak from Union Carbide Corporation’s (UCC) pesticide manufacturing plant in Bhopal, India. Informed by the complex effects of human rights in the amelioration of rightlessness, the article calls for reconstituting human rights as an optics of rightlessness

    Codon Size Reduction as the Origin of the Triplet Genetic Code

    Get PDF
    The genetic code appears to be optimized in its robustness to missense errors and frameshift errors. In addition, the genetic code is near-optimal in terms of its ability to carry information in addition to the sequences of encoded proteins. As evolution has no foresight, optimality of the modern genetic code suggests that it evolved from less optimal code variants. The length of codons in the genetic code is also optimal, as three is the minimal nucleotide combination that can encode the twenty standard amino acids. The apparent impossibility of transitions between codon sizes in a discontinuous manner during evolution has resulted in an unbending view that the genetic code was always triplet. Yet, recent experimental evidence on quadruplet decoding, as well as the discovery of organisms with ambiguous and dual decoding, suggest that the possibility of the evolution of triplet decoding from living systems with non-triplet decoding merits reconsideration and further exploration. To explore this possibility we designed a mathematical model of the evolution of primitive digital coding systems which can decode nucleotide sequences into protein sequences. These coding systems can evolve their nucleotide sequences via genetic events of Darwinian evolution, such as point-mutations. The replication rates of such coding systems depend on the accuracy of the generated protein sequences. Computer simulations based on our model show that decoding systems with codons of length greater than three spontaneously evolve into predominantly triplet decoding systems. Our findings suggest a plausible scenario for the evolution of the triplet genetic code in a continuous manner. This scenario suggests an explanation of how protein synthesis could be accomplished by means of long RNA-RNA interactions prior to the emergence of the complex decoding machinery, such as the ribosome, that is required for stabilization and discrimination of otherwise weak triplet codon-anticodon interactions

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Late Quaternary climatic record from ODP Site 705 in the Northern Indian Ocean

    Get PDF
    AbstractThe uppermost 500cm sedimentary core from ODP sitelocated at the Eastern flank of Najareth bank in the Northern Indian Ocean has yielded altogether twenty four species of planktonic foraminifera. Among all these species, Globorotalia menardii has been found to be consistently dominant in the faunal assemblages from most of the samples. The δ18O measured on the tests of Globorotalia menardii from all levels help in precisely working out the sediment accumulation rates at different isotopic stages, and deciphering the change in climate in the Late Quaternary as well
    corecore