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Abstract. Here we used organic composition and stable isotopic analysis to evaluate the effects of drainage and 

restoration at an ombrotrophic peatland, to assess whether rewetting of blanket bogs will reverse degradation. 

The organic composition of the peat and the isotopic fractionation between the solid (peat), liquid (pore water) 

and gas (soil gas) phases on actively accumulating, degrading and restored locations are compared. Fourier 

Transform Infrared Spectroscopy (FTIR) analysis of the organic material has shown a high level of humification 

(low decomposition) in the active peat. Stable isotope analysis in the solid, liquid and gas phases has 

corresponded with this and indicated that the active location is enriched in 13C in the solid and gas phases, 15N in 

the solid phase, 18O in the liquid and gas phases and D in the liquid phase, suggesting a closed system with 

limited isotopic fractionation and thus limited water movement and decomposition. The degrading location has a 

lower level of humification, and is depleted in 13C in the solid phase due to ingression of vascular plants. The 

restored location has high humification and enrichment of 13C and 15N in the solid phase, and D in the liquid 

phase suggesting increased microbial activity. 13C and 18O in the gas phase and 18O in the liquid phase are 

depleted, as a result of microbial mediated gas production and rewetting. FTIR analysis has also indicated a 

subsurface zone of increased decomposition between the acrotelm and catotelm in both the active and degrading 

peat. This is due to a stable water table and is not present within the restored location, which we attribute to 

water table fluctuation associated with rewetting. This zone of increased decomposition adds to the complexity 

of blanket bog peatlands and the assumption that all systems can be generalized under one conceptual model. 
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Highlights: 

• Isotope fractionation between active, degraded and restored peat is somewhat cyclic 

• Degradation results in decreased humification 

• Ingression of vascular plants in the degraded area depletes 13C in the solid phase 

• Restoration processes by rewetting partially reverses degradation 

 

1. Introduction 

Peatlands cover an area of around 4 million km2 or 3 % of the world’s land area (Bain et al. 2011), however this 

figure is declining due to agricultural intensification over the last 200 years (Walter et al. 2015). The European 

Union (EU) Habitats Directive describes peatlands as significant global carbon stores that also provide 

important ecosystem services, such as atmospheric pollutant interception and storage as well as flood prevention 

(Tinch 2009). Water derived from active blanket bogs is naturally of a high quality, as being ombrotrophic, they 

intercept and retain various atmospheric pollutants (Committee on Climate Change 2013). Organic soils develop 

under conditions of excess water and are known to be porous and hold a large amount of water when saturated 

(Boelter 1966). The water (and atmospheric pollutants) stored in the peat, is flow regulated, meaning it is held 

and maintained, mitigating any local droughts or flooding (Parish et al. 2008). Globally, efforts are now being 

made to protect and restore peatlands due to the realization of their potential as significant global carbon sinks, 

habitats of rare flora and fauna and as important water catchments. 

Peatlands are commonly conceptualized by one diplotelmic model, referred to as the acrotelm and 

catotelm (Ingram 1978). The acrotelm is postulated by Ingram (1978) as the upper layer of peat where water 

table fluctuations occur (oxygenated peat horizon) due to the high porosity and high hydraulic conductivity 

(Biester et al. 2005). This zone is characterized by a high organic matter content that is comprised of plant roots 

and decomposing plant material (Evans et al. 1999). It is thought that the highest rates of decomposition occur 

in the acrotelm and result in CO2 efflux into the atmosphere (Thormann 2006). It is also commonly accepted 

that the catotelm is permanently waterlogged and characterized by anoxic conditions and slow decomposition 

(Biester et al. 2014). This conceptualization is highly generalized and may not be representative of all peatland 
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types. The diplotelmic model by Ingram (1978) generally accounts for peat hydrology and more specifically, 

water table levels. In reality however, peatlands are highly complex and are characterized by a number of 

factors, such as temperature, vegetation, topography, rainfall and nutrient availability. It is also known that 

peatland characteristics change not only with depth, but laterally (Morris et al. 2011).  It is therefore almost 

impossible to assume one model for global peats but rather a conceptual model of decomposition processes for 

each site. 

It is well understood that water table decline within the peat profile increases rates of organic matter 

decomposition (Estop-Aragonés et al. 2013). It is thought that water table drawdown into the anoxic 

environment introduces oxygen, causing an increase in rates of aerobic decomposition and subsequent increase 

and decrease in CO2 and CH4 flux respectively (Lai 2009). More recent research undertaken by Estop-aragonés 

& Blodau (2012) have found that within some sites, this is true and that relative to saturated conditions, CO2 

production increases with drying, however only up until an optimum moisture content, and then decreases with 

further drying. This further emphasizes the variability amongst peatland types. Although peatland areas are now 

being protected and restored due to their recognition as an endangered form of habitat biodiversity, little 

research has been undertaken regarding the effects of re-wetting of drained peatlands on rates of decomposition 

and gas efflux. Bonnett et al. (2009) argued that ideally monitoring prior to restoration is needed to provide a 

pre-restoration baseline, or by comparing results to a control or reference site from which comparisons can be 

made. In reality such a location where monitoring has been undertaken prior to restoration, or locating a site of 

similar characteristics (vegetation, topography, rainfall, temperature or elevation) is difficult to find.  

With these benefits of protection and restoration in mind, in this study we compared the quality and 

composition of organic material between: a drained and over grazed (degrading) peat; an actively accumulating 

peat (active); and a previously drained and overgrazed peat which has undergone drain blocking and reduced 

grazing (restored) from an upland blanket bog catchment in Northern Ireland. Various methods, such as Fourier 

Transform Infrared Spectroscopy (FTIR) and Stable Isotope Analysis were used to compare solid, liquid and gas 

phases within each of the three locations to determine the effects of raising of the water table post drainage.  
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2. Material and Methods  

2.1. The Study Site  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Location of the Garron Plateau within the United Kingdom 

 

The Garron Plateau (Fig. 1) (latitude 55.003, longitude -6.061) blanket bog in Northern Ireland encompasses an 

area of over 4,650 ha (Joint Nature Conservation Committee, 2010). The peatland complex is a designated Area 

of Special Scientific Interest (ASSI), Special Area of Conservation (SAC), Special Protection Area (SPA) and a 

Ramsar site. A previous condition assessment undertaken by the Department of Agriculture, Environment and 

Rural Affairs (DAERA) in 2010, determined some areas to be in unfavourable condition. This condition 

assessment involved a visual inspection of the site using a combination of aerial photography (for drains, 

erosion gullies or land susceptible to erosion), estimation of plant cover in 2x2m plots and condition assessment 

structured walks (McKeown & Corbett 2015). Degradation at the site is predominantly a result of financial 

incentives by the government in the 60’s and 70’s to drain peatland areas for agricultural purposes and the 

subsequent high volume of sheep grazing on the land. Following this assessment, over 2,000ha of the less-

degraded and damaged areas have since been re-wetted in an attempt to restore the peat back to health. This was 
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completed in April 2014, and entailed blocking drains in order to raise the water table and also reducing and 

restricting the volume of sheep grazing at the site (Department of the Environment for Northern Ireland 2003).  

 

2.2. Field Sampling 

Using the knowledge gained from the condition assessment undertaken in 2010, an area was chosen from within 

each of the three locations (degrading, active and restored) previously defined by DAERA. The Garron Plateau 

was chosen for this study as it is such an expansive site, containing degrading, active and restored locations, 

which ensured each area was under similar environmental conditions (i.e. rainfall and temperature), which could 

affect vegetation growth, microbe activity, moisture levels and nutrient availability. Using the previous 

condition assessment undertaken by DAERA, RSPB reported the estimated area of the degrading, active and 

restored locations to be approximately 289.76, 1005.79 and 633.39 ha, respectively (Burns 2011). Using the 

geographical coordinates from the central sample location within each grid, the distance between the restored 

and active areas was calculated to be approximately 1.26 miles, the restored and degrading as 1.06 miles and the 

degrading and active as 0.52 miles. In addition, the degrading area is isolated by a small road through the site 

and the active area is located at a higher elevation. It has therefore been acknowledged that although each area is 

located on one site, the distance between each of the locations are large enough to determine them as 

independent from each other. 

Solid peat samples were taken for  FTIR and Stable Isotope Analysis following British Geological 

Survey G-BASE sampling protocol (Johnson 2005). This involved using a 20 m x 20 m square grid and taking a 

peat sample from each corner and also the centre of the grid (giving 5 sample points) from each of the three 

areas (Degrading (D) 1-5, active (A) 1-5 and restored (R) 1-5). (The location of the sampling grid within each 

area was chosen based on accessibility and ease of access for transporting equipment and samples). As the 

location of the water table in relation to the peat surface is an important factor in the biogeochemical processes 

that occur in the peat, samples were also taken at depths of 5, 15, 25 and 35 cm below ground level (giving 20 

samples from each area (60 in total)). Where averages were taken (Fig. 2, 4b, 5, and 6), these were calculated 

from the mean values of each of the five sample locations within each area. Although previous work at the site 

has found that the maximum peat thickness at the site is approximately 3 m, the near subsurface, and zone of 

acrotelm to catotelm differentiation was chosen. A depth of 35 cm was chosen as in a typical year it is known 

that in general, a peatland water table fluctuates within the top 30 cm of the peat (Shi et al. 2015). It was also 
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recognised by Esmeijer-Liu et al. (2012) that the top 0 to ±10 cm contain the youngest peat which is under 

aerobic conditions and from 20+ cm is where stability of the catotelm begins. The zone in between (10-20 cm) 

is where water table fluctuation and catotelm immobilisation is thought to occur (Esmeijer-Liu et al. 2012). The 

solid samples were collected using a Russian style peat auger which was inserted vertically into the peat layer at 

each sample location and placed into air-tight sealed sample bags.  

In addition, pore water samples were collected from each sample location (1-5) within the three areas 

(degrading, active and restored) using a peristaltic pump and placed into amber glass bottles from the same 

locations, post core collection for isotopic analysis. The pore water samples were collected approximately one 

hour after core collection to minimise the effects of the disturbance and to allow the water table to settle. All 

samples were taken back to the lab in low temperature (approx. 4 oC) cooler boxes.  

Soil gas samples were also collected for stable isotope analysis of carbon and oxygen using a closed 

static chamber method (Zerva 2004) at each of the sample locations (1-5) within the three areas (degrading, 

active and restored).  Gas sample collection was performed the week prior to solid and liquid sampling to 

minimise the effects of peat subsurface disturbance. Two of the most widely used techniques for the collection 

of gas samples are from closed dynamic chambers and closed static chambers, with the difference between the 

two being the absence of air circulation (Zerva 2004). As closed dynamic chambers involve the circulation of air 

directly from the chamber to the measuring equipment and it was impractical to transport equipment onsite, the 

closed static chamber method was employed. The sampling procedure involved using a heavy closed chamber 

with a volume of 5.03 L which was placed tightly onto the peat to ensure no atmospheric air would enter into 

the chamber. The chamber was pumped until it was a vacuum and then allowed to accumulate for 30 minutes 

before a pump was used to collect gas samples into 0.6 L Tedlar bags. The gas samples were taken back to the 

lab for stable carbon and oxygen isotopic analysis of carbon dioxide (CO2) within 24 hours to ensure no leakage 

or contamination from the atmosphere.  

 

2.3. Analytical Procedures 

2.3.1. FTIR Spectroscopy  

The solid peat samples were air-dried in the oven at a constant temperature of 28 oC until a constant mass was 

achieved. The samples were then milled to a fine powder using a SPEX CertiPrep cryogenic freezer mill 6850. 

The dried and powdered peat from each location was then analysed using FTIR to determine the organic matter 
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composition at different depths. Fourier Transform Infrared (FTIR) spectroscopy is a technique which has been 

widely used to characterise organic matter quality of bulk peat (Holmgren & Norden 1988) and is capable of 

distinguishing the principal chemical classes in soil organic matter, such as carbohydrates, lignins, cellulose, fats 

and/or lipids and proteinaceous compounds, through the vibrational characteristics of their structural chemical 

bonds (Artz et al. 2008). The spectral characterisation of our peat samples was obtained with a Jasco FT/IR-

4100 at a scan range of 4000-650 cm-1 and a resolution of 4 cm-1. Each sample was analysed three times and an 

average taken for analytical precision. A background reading was also taken between each sample to ensure 

results did not deviate due to any atmospheric changes within the lab.  

 

2.3.2. Stable Isotope Analysis 

As FTIR is a non-destructive technique, the same peat samples were used for stable isotopic analysis of carbon 

and nitrogen. Isotopes of a certain element contain the same number of protons (Z) but a different number of 

neutrons (N) (Zeebe & Wolf-Gladrow 2001) which gives them different molecular weights. Isotope 

compositions are expressed in ratios of the heavier isotope to the lighter one. All elements that form solid, liquid 

and gaseous compounds stable over a wide temperature range are likely to have variations in isotopic 

composition (Hoefs 2009). During biological reactions (e.g. photosynthesis or bacterial processes) the ratio of 

heavy to light isotopes changes, as the lighter isotope is more often used during the reaction, leaving the 

substrate enriched in the heavier isotope (Hoefs 2009). The Rayleigh distillation equation (Eq. (1)) can be used 

to describe this process of kinetic fractionation, whereby the rate of change in Ratio ( ) is given as a function of 

the fraction of remaining substrate ( ) during diminution of the substrate reservoir. and are the final and 

initial isotope ratios of the diminishing reservoir and  is the fractionation factor (Wynn et al. 2005). 

 

Equation (1) Rayleigh Dist illation equation 

 

Stable isotope analysis of carbon and nitrogen in the solid phase was undertaken using a Thermo Flash 1112 

Elemental Analyser coupled to Thermo Scientific Delta V Isotope Ratio Mass Spectrometer (IRMS). Samples 
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were calibrated against an externally calibrated leucine standard (-30.52 ‰ and 10.77 ‰ for carbon and 

nitrogen respectively). Additional QC for nitrogen was ensured by measurement of the IAEA N1 standard. 

Analytical precision for each standard was <0.15 ‰ for nitrogen and <0.05 ‰ for carbon (n=29 for both 

standards). Every seventh sample was duplicated.  

Stable oxygen and hydrogen analysis in the liquid phase was undertaken using a Thermo Thermal 

Conversion Elemental Analyser (TCEA) coupled to the Delta V IRMS. Samples were calibrated against the 

international standards VSMOW2 (0 ‰ for both hydrogen and oxygen) and SLAP2 (-427.5 ‰ for hydrogen 

and -55.50 ‰ for oxygen). Each individual sample and standard was injected from a GC-PAL autosampler via a 

1.2 μL syringe into the TCEA 6 times to minimise memory effects. An average of the final 4 or 5 injections 

were accepted as the value for the sample or standard, dependent on the memory coefficient which was 

calculated as ≥ 0.98 for each sample, meaning that the analysed isotope value represents 98 % of the true isotope 

value of the sample. This protocol is described by (van Geldern & Barth 2012). Analytical precision was < 0.25 

‰ and <1 ‰ for oxygen and hydrogen respectively. 

Gas analysis was performed on a Thermo Scientific Delta Ray Isotope Ratio Infrared Spectrometer 

(IRIS). Both samples and reference standard were measured in triplicate and analytical precision was <0.15 ‰ 

for both carbon and oxygen. The standard gas was calibrated and supplied by Thermo (Calibration Gas Bio, UN 

2037) and had values of -9.7 ‰ ± 0.3 and -9.2 ‰ ± 0.3 for carbon and oxygen respectively. Urban (Belfast) and 

on-site (Garron Plateau) atmospheric samples were also taken and analysed to ensure the samples collected from 

the chamber were representative. 

 

3. Results and Discussion 

3.1 FTIR Spectroscopy in Solid Phase 

FTIR spectroscopy can be used to identify the changes in humification with depth based on the relative 

abundance of recalcitrant moieties such as aliphatics or aromatics compared to labile fractions, such as 

carbohydrates (Cocozza et al. 2003). Using this principle, the absorption peaks most indicative of the structure 

of organic matter were used to calculate a ‘humification index ratio’ (Broder et al. 2012). This humification 

index ratio was calculated by comparing the peak intensity for polysaccharides (1070 cm-1 for degrading peat 

and 1040 cm-1 for active and restored peat) with substances that are typically enriched during humification of 

organic material, such as aromatic and phenolic compounds (1510 cm-1) and carboxylic/ carboxylate structures 
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(1420 cm-1) (Holmgren & Norden 1988). The values were calculated with depth to give an interpretation of 

how the humification of organic material changes through the peat profile. Peat organic matter characterization 

using FTIR spectroscopy involves the assignment of observed spectral characteristics. The interpretation of the 

peat wavelengths from the relevant literature is detailed in Table 1 below.  

 

Table 1 General assignment of IR absorption bands 

a Peltre et al. 2014; b Niemeyer et al. 1992; c Cocozza et al. 2003; d Artz et al. 2008; e Grube et al. 2006 

 

Wavelength 

(cm-1) 

Vibration Characterisation 

3340 O-H stretching Water, alcohols and phenols; carboxyl and 

hydroxyl groups (cellulose)a 

2920 Antisymmetric CH2 Fats, wax and lipidsb 

2850 Symmetric CH2 Fats, wax and lipidsb 

1720 C=O stretch of COOH or COOR Carboxylic acids, aromatic estersa 

1600-1650 Aromatic C=C stretching and/or 

asymmetric C-O stretch in COO- 

Lignin and other aromatics, or aromatic or 

aliphatic carboxylatesa 

1540 Amide II N-H and C-N in plane  Proteinaceous origina 

1510 Aromatic C=C stretching Lignin/phenolic backbonec 

1420 Symmetric C-O stretch from COO- or 

stretch and OH deformation (COOH) 

Carboxylic/carboxylate structures (lignin)d 

1040-1070 C-O stretching and O-H deformation Polysaccharidesd  



 

10 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Averaged raw solid spectral  results calculated from the triplicate spectral values from the 5 
locations to give one set of results  with depth at each of the 3 areas. Close up of data from 1500-
1750cm- 1.  (N.B. results were off-set and overlaid only for visual clarity) (b).  

 

The FTIR spectra in Fig. 2, pertaining to the averaged degrading, active and restored samples at depths of 5, 15, 

25 and 35 cm show common wavelength patterns which vary in peak intensity over each area and with depth. 

When comparing the IR spectra with depth it can be seen from Fig. 2a that the peak intensity at 3340 cm-1 which 

is assigned to residual cellulose, alcohols and phenols is highest in the degrading samples. The peak intensity 

increases with depth in the restored samples. It can also be seen that there is a relative increase in aliphatic 

structures (2920 and 2850 cm-1) with depth and a decline in peak intensity for polysaccharides (1070-1040 cm-

1), most likely cellulose and residual hemicellulose (Artz et al. 2008), which is most apparent in the degrading 

samples. This is as expected as humification increases with depth (Artz et al. 2008), due to the preferential 

decomposition of polysaccharides under aerobic conditions, over less easily decomposable material such as 

aliphatic structures which are enriched with depth. It should also be noted that the wavelength peak for 

polysaccharides is at 1040 cm-1 for both the active and restored samples whereas it has shifted to 1070 cm-1 for 

the degrading samples, indicating a change in organic matter composition. The shift in peak is also seen within 

the spectral band from 1600-1650 cm-1 (Fig. 2b), which is indicative of carboxylates which include contributions 

from vibrations of aromatic and aliphatic carboxylates (R-COO-), and/or aromatic C=C structures (Artz et al. 

2008). This band range is generally more intense from the degrading samples compared to the active and 

restored, however more importantly, the peak wavelength for both the active and restored samples is at 1620 cm-
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1, whereas this has shifted slightly right to 1635 cm-1 for the degrading samples, further evidencing this shift in 

organic matter composition during degradation. This shifting in wavelength increases with depth.  In general, 

the degrading samples have lower absorbencies (less intense peaks) at each depth, whereas the active samples 

have the highest absorbencies at 5 and 15 cm, and the restored having the highest at 25 and 35 cm.  

 

3.1.1 Humification Indices and Principle Component Analysis (PCA) using FTIR Data  

 

 

 

 

 

 

 

 

  

 

 

The calculation of the humification indices with depth (Figs. 3a and 3b) both indicte that humification generally 

increases with depth, more specifically that labile and easily decomposable polysaccharide content decreases, 

while aromatic, phenolic and carboxylic moieties increase with depth. The results indicate that at the surface (5 

cm bgl) the active area is the most humified, with the degrading location being the least humified. The 

calculated values for both the active and restored areas are quite similar (0.14 and 0.15 respectively at 15cm bgl 

from Fig. 3a), whereas the degrading are lower (0.08 at 15 cm bgl for 3a). The results suggest that humification 

increases almost linearly in the restored area, however the active and degrading areas both decrease in 

humification at 25 and 35 cm bgl respectively. This decrease is more prominent in the active area. This increase 

Fig. 3b. Humification index using the ratio 
of aromatic and phenolic compounds (1510 
cm- 1) relative to polysaccharidic content 
(1070 cm- 1 for degrading and 1040 cm- 1 for  
active and restored). Calculated standard 
error was no greater than 0.00058 which 
occurred at 5 cm bgl in the active location.  

 

Fig. 3a. Humification index using the ratio of 
carboxylic/carboxylate (1420 cm- 1) structures 
relat ive to polysaccharidic content (1070 cm- 1  
for degrading and 1040 cm- 1 for active and 
restored). Calculated standard error was no 
greater than 0.00043 which occurred at 5 cm 
bgl in the restored location.  
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in decomposition would suggest that the conceptualised diplotelmic model by Ingram (1978)  is not applicable 

at neither the degrading nor active sites and that the processes occurring here are more complex. A possible 

suggestion for this is the ‘triplotelimic’ model hypothesised by Clymo and Bryant (2008), whereby a third layer 

occurs between the acrotelm and catotelm, coined the ‘mesotelm’, and is the site of complicated biological and 

chemical processes (Clymo 2015). This layer occurs where the water table oscillates by only a few cm about its 

mean value and remains relatively stable. This redox boundary (‘mesotelm’) causes a layer where oxic and 

anoxic conditions are adjacent and is highly complex due to the chemical and biogeochemical processes that can 

be oxic, suboxic or anoxic (Yakushev & Newton 2013). It is anticipated that water table fluctuations are 

minimal in the active area and occur around 25cm bgl. Fig. 3 shows a slight decrease in humification at 35cm 

bgl in the degrading area. This may also be due to the presence of a redox boundary and a similar ‘mesotelm’ 

layer, which is expected to be deeper than the active area. Although the total sample depth was only 35cm bgl, 

the gradient is less steep than that of the active area, suggesting that the intensity of this ‘spike’ in 

decomposition is less intense. This ‘mesotelm’ layer is not present in the restored area, which could be a result 

of the water table fluctuating at such a high level that there is no evident redox boundary. This is discussed 

further in section 6. 

Although this humification index aids interpretation of results, as there are so many peaks, with even 

small changes, it is still difficult to interpret IR spectra and identify specific features and correlating them with 

accuracy to a specific constituent (Holmgren & Norden 1988). Principle Component Analysis (PCA) can be 

used to analyse such complex datasets and is a well-known technique used for reducing the dimensionality of 

multivariate data whilst preserving most of the variance (Harrison et al. 2006). PCA has the ability of extracting 

the most significant variations between variables to reveal the sometimes simple relationship among large sets 

of data (Owen 2014). It has been used by Biester et al. (2014) on peat samples after FTIR analysis to decipher 

underlying biogeochemical processes related either to decomposition and/ or changes in vegetation pattern. It 

can be used to analyse and discriminate samples that are of similar or different organic matter quality based on 

the peak heights at each wavelength. With prior knowledge of sample location and conditions conclusions can 

be derived regrding the underlying factors accounting for the differences. We therefore used PCA to make 

inferences regarding the processes and rates of decomposition occurring within the peat at various depths. The 

analysis was performed using Orange Software which is freely available at: https://orange.biolab.si/download/. 

 

https://orange.biolab.si/download/
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Fig. 4.  PCA of average solid FTIR results (calculated from averaged raw data from Fig. 2) from each 
location at depths of 5, 15, 25 and 35 cmbgl.  

 

Fig. 4 displays the PCA analysis of the averaged absolute spectral values taken from Fig.2 from each of the 

three locations at various depths. In addition, PCA on the raw absolute (non-averaged) spectral values are shown 

in supplementary information 1. The PCA’s were created to easily visualize a generalized summary of the 

results, as it is difficult to differentiate trends using raw data. In Fig. 4 PC1 represents a significant proportion 

(69.38 %) of the variance within the dataset and consequently shows a high level of variance between the active 

and restored locations compared to the degrading. The results for the active and the restored areas have negative 

values in the PC1 direction, whereas the degrading have positive values, indicating that the active and restored 

locations are of similar organic matter quality whereas the degrading location has a different organic 

composition. This would indicate that PC1 is driven by the organic signature which likely represents the degree 

of decomposition at each sample area, as during decomposition, labile organic compounds degrade first, 

corresponding to the humification ratio calculated in Fig. 3, which shows the degrading samples to be less 

humified/ more decomposed than both the active and restored locations. The significance of PC2 is more 

difficult to interpret as the significance is so low (15.86 %).  It is postulated that due to the negative loading of 

the samples from the active area, and also those from the surface of the restored area, PC2 may be driven by 

vegetation changes and that negatives values are associated with the occurrence of sphagnum. The positive 

values, specifically the deeper samples from the restored area (which may be representative of the organic 
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matter composition of this area when it was previously under a degraded status, prior to drain blocking) and the 

majority of those from the degrading area correspond to a lower occurrence of sphagnum and vascular plant 

domination. This correlates with the condition and vegetation assessment undertaken by RSPB in conjunction 

with DAERA which determined the degrading area to be dominated by ‘rush pasture and acid grassland, and 

thin peats with heath’ and that the restored area contains ‘a reduced coverage of sphagnum with heather and 

cotton grass present’ (information taken from table 1 pg. 6 (Burns 2011)). 

 

3.2 Stable Isotope Analysis  

Stable carbon and nitrogen isotopes are a widespread tool used to analyse biochemical processes in soils, based 

on the ratio of heavy to light isotopes. Isotopic fractionation occurs when decomposing bacteria preferentially 

use lighter isotopes during respiration which could lead to an enrichment of the heavier isotopes in the 

remaining organic material (Krüger et al. 2014). This kinetic fractionation means stable carbon and nitrogen 

analysis of solid peat samples with depth could therefore show a change in metabolic pathway from the acrotelm 

(aerobic) to the catotelm (anaerobic) and give an indication of rates of decomposition within the peat.  

 

3.2.1 Stable Isotope Analysis of 13C and 15N and PCA in Solid Phase    
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Fig. 5. Average 13C and 15N values in the solid phase calculated from the 5 sample locations from the 
degrading (D), active (A) and restored (R) areas at depths of 5, 15, 25 and 35 cm (See Supplementary 
Information 2).  Standard error was calculated and used for the addition of error bars  

 

Average 13C and 15N values (calculated from information shown in Supplementary Information 2) taken from 

each site at the various depths (Fig. 5) show that a clear depth trend can be seen at each location, especially in 

the case of the active (R2=0.99) and the degrading (R2=0.97) samples. The surface samples contain lower δ13C 

and δ15N values which increase with depth. A uniform or only slightly increasing depth trend in the carbon 

isotopic signature is indicative of young/ poorly drained soils, whereas a pronounced δ13C increase with depth is 

typical of mature, well-drained soils, as decomposition favours the selective loss of 12C (Alewell et al. 2011). 

This depth trend is shown in Fig. 5 as results show that both the active and restored samples have a smaller 

range (0.4 ‰) and more uniform depth trend than the degrading samples (0.6 ‰). Given that only the top 35cm 

were sampled and given the trend line, this is expected to become more apparent with depth. In addition to this, 

the δ13C values associated with the active and restored samples have a distinct carbon isotopic shift (-26.82 to -

26.15 ‰) compared with the degrading samples (-27.67 to -27.04 ‰). This represents the ingression of vascular 

plants in the degrading area which produce more lignin rich litter, which tends to be depleted in 13C (Gogo et al. 

2012). This correlates with the aforementioned vegetation survey undertaken by RSPB in conjunction with 

DAERA (Burns 2011) that determined the degrading area to be the most dominated by rush pasture and acid 

grassland. 
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Fig. 6. PCA of average δ13C and δ15N values in the solid phase (calculated from the data from Fig. 5) 
from each of the 5 sample locations at depths of 5, 15, 25 and 35 cm 

 

Fig. 6 illustrates the results achieved by PCA of the average δ13C and δ15N values in the soil phase that are 

represented in Fig. 5. PC1 represents a significant proportion (77.29 %) of the variance within the dataset and 

therefore shows a high level of variance between the active and restored locations, which cluster together and 

have negative values in the PC1 direction, compared to the degrading location, which have positive values. 

When comparing these results with those from Fig. 5 there is a clear correlation with PC1 being driven by the 

δ13C values and PC2 being driven by the δ15N values. These results are very similar to those achieved from the 

PCA of FTIR data (Fig. 4). Which show that the organic composition and signature is closely related to the 

stable isotopic signature which are both affected and influenced by decomposition and vegetation legacy within 

the peat profile. It should also be noted that in both analyses, sample A 5cm is an outlier, which was also the 

case in Figs. 4 and 5, indicating this is not an analytical or lab based error.  When comparing this with data 

shown in supplementary information 2, this outlying result occurs due to the δ13C depleted samples taken from 

A1 and A4 at the surface (5 cmbgl). The occurrence of this result may be due to the effects of microtopography 

and that the water table may be lower at this location, causing an increase in aerobic decomposition at the 

surface or higher concentration of vascular plants compared to mosses, which correlates with the findings 

discussed in Fig. 4. This highlights the importance of a field sampling technique that takes several samples in 

order to be representative of the location in question. 
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3.2.2 Stable Isotope Analysis of 18O and D in Liquid Phase 

Using the principle of kinetic fractionation, the stable isotopic signature of pore water can also be used as an 

indicator for the in situ distribution and activity of microbes in anoxic sediments, as during kinetic fractionation 

via decomposition and bacterial processes, methanogens preferentially remove the lighter hydrogen isotope (1H) 

from the surrounding pore water, causing an enrichment of the heavier isotope (deuterium (D)) (Siegel et al. 

2001). In addition, during evaporation, the lighter oxygen (16O) and hydrogen (1H) isotopes are preferentially 

evaporated due to their higher vapour pressure (Stoll 2014). Craig (1961) established a correlation (eq. 2) 

between the depletion of the heavier oxygen isotope (18O) and D in global freshwaters. He defined this 

interdependence as the ‘Global Meteoric Water Line’ (GMWL) and is shown by the equation: 

  

Equation (2) GMWL equation 

 

This GMWL defines the relationship between δ18O and δD in global freshwater, and takes into account tropical 

regions and areas of extreme climates. It was therefore preferential to use a Local Meteoric Water Line 

(LMWL) using precipitation data from a similar climate. Diefendorf & Patterson (2005) collected monthly 

precipitation data from Ireland from 1957-2002 which was used to create a LMWL. Although this data was only 

collected in Valentia, in the southwest of Ireland, the data was chosen as it was readily available and collected 

over such a wide timescale. It is recognised however that this precipitation data may differ from the northeast of 

Ireland and may have elevation effects, however these are considered to have minimal impact on the results and 

are the best comparison available at this time. Comparing data collected at the Garron Plateau with this LMWL 

gives an indication of the rate of evaporation and storage of water within the peat. 
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Fig. 7. Stable 18O and D isotope analysis from pore water samples (N.B. D3 was dry so no water 
sample was obtained) compared with the LMWL  

 

As indicated by Fig. 7, more positive (enriched) deuterium (δD) values suggest that high rates of anaerobic 

microbial activity are occurring in the restored and active areas, as methanogens preferentially remove light (1H) 

hydrogen from the surrounding interstitial pore fluids during the operation of their metabolic pathways (Siegel 

et al. 2001) causing an enrichment of the heavier isotope. Samples A3 and A4 have slightly depleted δD values, 

which may be a result of drier conditions here as a result of micro topographical differences, causing a depletion 

in methanogenic activity. However, when comparing the δ18O values with the LMWL from precipitation data 

collected in Valentia, all of the samples (including A3 and A4) from both the degrading and active samples are 

more enriched in δ18O, indicating higher rates of evaporation when compared to rainfall data from Valentia. 

This occurs as lighter isotopes (18O) are preferentially evaporated due to their higher vapour pressure, causing an 

enrichment in the remaining water (Stoll 2014). Although in general, samples from the same area cluster 

together, samples A3 and A4 fall out of this clustering, however, most importantly, are still are enriched in δ18O 

relative to the LMWL, as are all of the active and degrading samples. This enrichment indicates high levels of 

evaporation (Stoll 2014), and  suggests that water movement in these areas and therefore water table fluctuation 

is limited. The samples from the restored area are depleted in δ18O (with the exception of R1) when compared to 

the LMWL, indicating lower rates of evaporation and greater transport of water, as continuous influx of water is 
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expected to depress the level of 18O enrichment in an open pool (Keimowitz et al. 2013). Sample R1 suggests 

that this location has a higher rate of evaporation, similar to that of the active and degrading locations, which 

may be due to this sample being located closest to a blocked drain, possibly holding the water in place more 

easily than the other sample locations. 

 

3.2.3 Stable Isotope Analysis of 13C and 18O in Soil Gas Phase 

In addition to the stable isotopic signature of solid and liquid material, stable carbon and oxygen isotope 

analysis of gases being released from the peat is also a useful indicator of decomposition processes via 

fractionation between the solid and gas phases. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Stable 13C and 18O isotope analysis of carbon dioxide in soil gas samples taken from the 5 
sample locations within the degrading (D), active (A) and restored (R) areas. An atmospheric sample 
from the Garron Plateau is also shown.  

 

Fig. 8 shows that the results from each area (with the exception of A1) have lower δ13C and δ18O values relative 

to the atmospheric (aerobic) result. The results for the degrading area are the most similar to the results from the 

aerobic conditions. The samples collected from the restored area have the lowest δ13C and δ18O values, this is as 

expected as when compared to the δ13C values in the solid phase (Fig. 5), the restored samples are the most 
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enriched, indicating high levels of fractionation in the solid phase, leading to depletion of δ13C in the gas phase. 

The opposite occurs with regards to the degrading samples, whereby the δ13C values are depleted in the soil 

phase and enriched in the gas phase. Unexpectedly, the active area lies between the two, being relatively more 

enriched in the solid phase and slightly also slightly enriched in the gas phase. However when comparing this 

with the δ13C results from Fig. 5, the active location also lies central between the degrading and restored values. 

In addition, in both Figs. 5 and 6, sample A 5cm has been an outlier. When comparing these results with the 

absolute δ13C and δ15N values in the soil phase, (see supplementary information 2) this depletion can be 

attributed to sample A1, which is greatly depleted at both 5 and 15 cmbgl. This depletion in the solid phase 

accounts for the relative enrichment in the gas phase, seen in Fig. 8. As previously mentioned, this is expected to 

be a result of microtopography, where the water table may be lower than the other active locations, causing 

increased aerobic decomposition and a dominance of vascular plants due to the drier conditions. When 

comparing the δ18O values between the liquid (Fig. 7) and gas phases, the degrading samples are enriched in 

δ18O in the gas phase and depleted in the liquid phase. The opposite again occurs with the restored samples, 

whereby the δ18O values are depleted in the gas phase and enriched in the liquid phase. Similar to comparing the 

δ13C fractionation between the solid and gas phases, the δ18O values from the active area are generally in 

between extremities, being slightly enriched in both the gas phase and liquid phase. The level of the water table 

is known to be an important control of CO2 production in peatlands, however it’s influence is highly complex 

and intricate. Estop-aragonés & Blodau (2012) and Hogg et al. (1992) have found that compared to water 

saturated conditions, CO2 production typically increases with drying only up until an optimum moisture content 

and then decreases upon further drying. They found that this response differs greatly between sites and also with 

depth within a given site, highlighting the intricacy with which conceptual models need to be created.  
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3.2.4. PCA of Stable Isotope Analysis in Solid, Liquid and Gas Phases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. PCA of average δ13C and δ15N values in the solid phase (calculated from data from 
supplementary information 2) (a) ,  δ18O and δD values in the liquid phase (calculated from data from 
Fig. 7) (b)  and δ13C and δ18O in the gas phase (calculated from data from Fig. 8) (c).  

a) 

b) 
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Fig. 9 illustrates the PCA of the isotopic analysis taken in solid (a), liquid (b) and gas (c) phases. The results 

indicate that in each case there is high loading associated with the first component (>70%). When compared to 

Figs. 4-6, the results suggest that more negative values in the PC1 direction indicate isotopically depleted 

values, whereas more positive values indicate isotopic enrichment. In particular, Fig. 9a suggests that the main 

driver for PC1 may be the δ13C values and PC2 the δ15N values when compared to the results from Fig. 5. When 

comparing Fig. 9b with the liquid phase values from Fig. 7 it is supposed that PC1 is driven by δD values, and 

PC2 by the δ18O values as the same trends are shown in both cases. In addition, comparing the PCA of Fig. 9c 

with the gas results from Fig. 8 suggest that PC1 may be driven by either δ13C or δ18O values, given that the PC2 

loading is very minimal (2.08 %). When comparing each area between phases, for example the restored area, 

Fig. 9 suggests that this area becomes gradually depleted moving from solid, to liquid to gas phases, indication 

high levels of fraction. The samples from the active area are generally centralized, indicating low rates of 

fractionation, but becoming slightly more enriched moving from solid, liquid and gas phases. The results from 

the degrading area indicate minimal fractionation from the solid to liquid phase, but dramatic fractionation 

between either the solid to gas or liquid to gas phase. 

 

4 Conceptual Understanding of System 

Peatlands are not only complex but delicate systems whereby drainage and degradation can happen on a rapid 

scale. Prior to modern protection and restoration policies, a diplotelmic model of general peat structure was 

created by Ingram (1978), which characterizes peatlands as consisting of an acrotelm and catotelm. This has 

been commonly accepted as peatland structure (Evans et al. (1999); Slater et al. (2007); Rosa & Larocque 

(2008)), however we propose that this may not be valid for all peatlands. Our results support the postulation by 

Ingram (1978) that humification does increase moving from the acrotelm to the deeper catotelm. However in 

both the active and degrading sites at the Garron Plateau there is a zone of intense decomposition in the 

subsurface. This zone was also found between the acrotelm and catotelm on raised bog cores from Sweden 

(Franzén 2006) and in the Jura mountains in Switzerland (Cocozza et al. 2003) indicating that it is not limited to 

blanket bog sites. This zone was defined by Clymo & Bryant (2008) as the ‘mesotelm’ which is usually anoxic, 

but periodically oxic. This zone of intense decomposition occurs as microorganisms are most active at redox 

boundaries where they can benefit from access to various reductants and oxidants generated during redox 
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cycling events (Hines 2006). At the Garron Plateau stable isotopic analysis of 18O indicated that both the active 

and degrading areas, are enriched in δ18O relative to the LMWL, indicating high levels of evaporation (Stoll 

2014), which would suggest that water movement in these areas and therefore water table fluctuation is limited. 

The restored area was depleted in δ18O relative to the LMWL, indicating low levels of evaporation and high 

rates of water table fluctuation and consequently contains no evident zone of increased decomposition, and no 

clear redox boundary. This may be due to drying and subsequent rewetting of the peat as part of the restoration, 

which has caused the enhancement of physical fractures resulting in a secondary porosity that promotes greater 

transmissivity of water.  

In addition, stable isotopic analysis of the solid, liquid and gas phases has shown that the active 

location is enriched in all phases, which indicates that this area has the lowest rates of fractionation between 

phases, suggesting a stabilized, enclosed system. Actively accumulating peatlands are stable systems when 

methane production is balanced by methane consumption. Segers (1998) proposed that a large and varying part 

(1-90%) of the produced methane could be consumed again by methane oxidizing bacteria present in the oxic 

top layer or in the oxic rhizosphere. Smemo and Yavitt (2006 and 2007) also found that anaerobic oxidation of 

methane occurs simultaneously with methanogenesis and can consume significant amounts of gross CH4, 

constraining atmospheric CH4 flux under certain conditions. This highlights the complexity of the multiple 

factors at play even in active peatland areas. 

 As the peat degrades, both the solid (δ13C and δ15N) and liquid (δD) phases are depleted whereas the 

gas (δ13C and δ18O) phase remains enriched. This indicates increased decomposition, as aerobic decomposition 

results in relatively lighter δ13C values which increase with depth (Alewell et al. 2011), causing an enrichment 

in the gas phase and depletion of δD in the liquid phase due to increased aerobic decomposition and decreased 

anaerobic microbial activity. In addition, the depleted δ13C values associated with the solid phase may be 

reflective of vegetation changes in the degrading location, as vascular plants, composed of lignin tend to be 

depleted in 13C (Gogo et al. 2012). Fernandez (2003) also found a consistent trend whereby enrichment in the 

gas phase was concurrent with depletion of residual carbon in the solid phase as a result of ongoing 

decomposition.   

The results from the restored location indicate enrichment of δ13C and δ15N in the solid phase and 

enrichment of δD in the liquid phase. Raising the water table and rewetting the peat has increased microbial 

activity, enriched δD in the liquid phase, with δ13C and δ15N more enriched in the solid phase, this fractionation 
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subsequently causes isotopic depletion in the gas phase, as microbes preferentially respire 12C (Yang et al. 2014) 

causing depletion of δ13C in the gas phase. This may be due to the high water table fluctuation which causes the 

peat system to become less stable and open, as gases produced by microbial activity are not consumed within 

the system. This is similar to the mechanism suggested by Fenner & Freeman (2011) where rewetting of peats 

can cause accelerated carbon losses to the atmosphere. It is also possible that this gas fractionation signal may 

be ‘non unique’, suggesting that complex microbial mediated reactions between CO2, CH4 and other volatile 

compounds such as isoprene (Galand et al. 2010). Isoprene accounts for approximately one third of the total flux 

of volatile organic compounds to the atmosphere, an amount similar to methane (Cleveland & Yavitt 1998) yet 

has not been extensively studied in peatlands. 

The isotopic analysis at each location has shown that the process of fractionation is quite systematic 

and that the process of degradation or restoration is somewhat cyclic. Using the results obtained from this 

project a site-specific model for the processes occurring at the Garron Plateau has been put forward:  
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Fig. 10. Proposed conceptual model of isotopic fract ionation and humification processes at the Garron 
Plateau  

 

5 Conclusions 

This proposed conceptual model of active, degrading and restored peatlands summarises the increasing rate of 

humification with depth at each location, and the subsurface zones of increased decomposition in both the active 

and degrading areas, which combined with stable isotopic analysis, is postulated to be due to a stable water table 
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and redox boundary. This zone is not evidenced in the restored location which may be a result of a fluctuating 

water table which may result in isotopically depleted gas. It is evident that restoration of drained or overgrazed 

peatlands rewetting does result in some reversal of degradation mechanisms producing similar outputs to an 

actively accumulating peatland (increased humification), which can be easily monitored using chemical and 

stable isotopic methods. However, there are still mechanisms around fluctuation of the restored water table and 

the resulting generation of soil gases that need to be understood if such restoration is to be seen as effective. 

 

6 Future Research 

These results achieved from this project indicate that following a multi-analytical approach (stable isotopic 

analysis and organic chemistry) is required to fully assess and understand the complex processes that occur in 

peatlands. Future work related to this project would entail the use of metagenomic analysis to determine how 

microbial communities functionally interact in the degradation of peatlands and how they respond to 

environmental changes such as drainage and re-wetting.  
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