37 research outputs found

    A quantum fluid of metallic hydrogen suggested by first-principles calculations

    Full text link
    It is generally assumed that solid hydrogen will transform into a metallic alkali-like crystal at sufficiently high pressure. However, some theoretical models have also suggested that compressed hydrogen may form an unusual two-component (protons and electrons) metallic fluid at low temperature, or possibly even a zero-temperature liquid ground state. The existence of these new states of matter is conditional on the presence of a maximum in the melting temperature versus pressure curve (the 'melt line'). Previous measurements of the hydrogen melt line up to pressures of 44 GPa have led to controversial conclusions regarding the existence of this maximum. Here we report ab initio calculations that establish the melt line up to 200 GPa. We predict that subtle changes in the intermolecular interactions lead to a decline of the melt line above 90 GPa. The implication is that as solid molecular hydrogen is compressed, it transforms into a low-temperature quantum fluid before becoming a monatomic crystal. The emerging low-temperature phase diagram of hydrogen and its isotopes bears analogies with the familiar phases of 3He and 4He, the only known zero-temperature liquids, but the long-range Coulombic interactions and the large component mass ratio present in hydrogen would ensure dramatically different propertiesComment: See related paper: cond-mat/041040

    Methods of photoelectrode characterization with high spatial and temporal resolution

    Get PDF
    Materials and photoelectrode architectures that are highly efficient, extremely stable, and made from low cost materials are required for commercially viable photoelectrochemical (PEC) water-splitting technology. A key challenge is the heterogeneous nature of real-world materials, which often possess spatial variation in their crystal structure, morphology, and/or composition at the nano-, micro-, or macro-scale. Different structures and compositions can have vastly different properties and can therefore strongly influence the overall performance of the photoelectrode through complex structure–property relationships. A complete understanding of photoelectrode materials would also involve elucidation of processes such as carrier collection and electrochemical charge transfer that occur at very fast time scales. We present herein an overview of a broad suite of experimental and computational tools that can be used to define the structure–property relationships of photoelectrode materials at small dimensions and on fast time scales. A major focus is on in situ scanning-probe measurement (SPM) techniques that possess the ability to measure differences in optical, electronic, catalytic, and physical properties with nano- or micro-scale spatial resolution. In situ ultrafast spectroscopic techniques, used to probe carrier dynamics involved with processes such as carrier generation, recombination, and interfacial charge transport, are also discussed. Complementing all of these experimental techniques are computational atomistic modeling tools, which can be invaluable for interpreting experimental results, aiding in materials discovery, and interrogating PEC processes at length and time scales not currently accessible by experiment. In addition to reviewing the basic capabilities of these experimental and computational techniques, we highlight key opportunities and limitations of applying these tools for the development of PEC materials

    Theoretical and experimental investigation of the equation of state of boron plasmas

    Full text link
    We report a theoretical equation of state (EOS) table for boron across a wide range of temperatures (5.1×\times104^4-5.2×\times108^8 K) and densities (0.25-49 g/cm3^3), and experimental shock Hugoniot data at unprecedented high pressures (5608±\pm118 GPa). The calculations are performed with full, first-principles methods combining path integral Monte Carlo (PIMC) at high temperatures and density functional theory molecular dynamics (DFT-MD) methods at lower temperatures. PIMC and DFT-MD cross-validate each other by providing coherent EOS (difference <<1.5 Hartree/boron in energy and <<5% in pressure) at 5.1×\times105^5 K. The Hugoniot measurement is conducted at the National Ignition Facility using a planar shock platform. The pressure-density relation found in our shock experiment is on top of the shock Hugoniot profile predicted with our first-principles EOS and a semi-empirical EOS table (LEOS 50). We investigate the self diffusivity and the effect of thermal and pressure-driven ionization on the EOS and shock compression behavior in high pressure and temperature conditions We study the performance sensitivity of a polar direct-drive exploding pusher platform to pressure variations based on comparison of the first-principles calculations with LEOS 50 via 1D hydrodynamic simulations. The results are valuable for future theoretical and experimental studies and engineering design in high energy density research. (LLNL-JRNL-748227)Comment: 12 pages, 9 figures, 2 table

    Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution

    Get PDF
    Low-cost, layered transition-metal dichalcogenides (MX_2) based on molybdenum and tungsten have attracted substantial interest as alternative catalysts for the hydrogen evolution reaction (HER). These materials have high intrinsic per-site HER activity; however, a significant challenge is the limited density of active sites, which are concentrated at the layer edges. Here we unravel electronic factors underlying catalytic activity on MX_2 surfaces, and leverage the understanding to report group-5 MX_2 (H-TaS_2 and H-NbS_2) electrocatalysts whose performance instead mainly derives from highly active basal-plane sites, as suggested by our first-principles calculations and performance comparisons with edge-active counterparts. Beyond high catalytic activity, they are found to exhibit an unusual ability to optimize their morphology for enhanced charge transfer and accessibility of active sites as the HER proceeds, offering a practical advantage for scalable processing. The catalysts reach 10 mA cm^(−2) current density at an overpotential of ∼50–60 mV with a loading of 10–55 μg cm^(−2), surpassing other reported MX2 candidates without any performance-enhancing additives
    corecore