1,747 research outputs found

    An alpha theory of time-dependent warped accretion discs

    Get PDF
    The non-linear fluid dynamics of a warped accretion disc was investigated in an earlier paper by developing a theory of fully non-linear bending waves in a thin, viscous disc. That analysis is here extended to take proper account of thermal and radiative effects by solving an energy equation that includes viscous dissipation and radiative transport. The problem is reduced to simple one-dimensional evolutionary equations for mass and angular momentum, expressed in physical units and suitable for direct application. This result constitutes a logical generalization of the alpha theory of Shakura & Sunyaev to the case of a time-dependent warped accretion disc. The local thermal-viscous stability of such a disc is also investigated.Comment: 16 pages, 3 figures, to be published in MNRA

    Nonperturbative Gauge Fixing and Perturbation Theory

    Full text link
    We compare the gauge-fixing approach proposed by Jona-Lasinio and Parrinello, and by Zwanziger (JPLZ) with the standard Fadeev-Popov procedure, and demonstrate perturbative equality of gauge-invariant quantities, up to irrelevant terms induced by the cutoff. We also show how a set of local, renormalizable Feynman rules can be constructed for the JPLZ procedure.Comment: 9 pages, latex, version to appear in Phys. Rev.

    Scaling in long term data sets of geomagnetic indices and solar wind ϵ as seen by WIND spacecraft

    Get PDF
    We study scaling in fluctuations of the geomagnetic indices (AE, AU, and AL) that provide a measure of magnetospheric activity and of the ε parameter which is a measure of the solar wind driver. Generalized structure function (GSF) analysis shows that fluctuations exhibit self-similar scaling up to about 1 hour for the AU index and about 2 hours for AL, AE and ε when the most extreme fluctuations over 10 standard deviations are excluded. The scaling exponents of the GSF are found to be similar for the three AE indices, and to differ significantly from that of ε. This is corroborated by direct comparison of their rescaled probability density functions

    Global wave loads on a damaged ship

    Get PDF
    A computational tool was applied based on a two dimensional linear method to predict the hydrodynamic loads for damaged ships. Experimental tests on a ship model have also been carried out to predict the hydrodynamic loads in various design conditions. The results of the theoretical method and experimental tests are compared to validate the theoretical method. The extreme wave induced loads have been calculated by short term prediction. For the loads in intact condition, the prediction with duration of 20 years at sea state 5 is used, while for loads in damaged conditions the prediction in 96 hours exposure time at sea 3 is used. The maximum values of the most probable extreme amplitudes of dynamic wave induced loads in damaged conditions are much less than those in intact condition because of the reduced time. An opening could change the distribution of not only stillwater bending moment but also wave-induced bending moment. It is observed that although some cross sections are not structurally damaged, the total loads acting on these cross sections after damage may be increased dramatically compared to the original design load in intact condition

    Scaling of solar wind e and the AU, AL and AE indices as seen by WIND

    Get PDF
    We apply the finite size scaling technique to quantify the statistical properties of fluctuations in AU, AL and AE indices and in the parameter that represents energy input from the solar wind into the magnetosphere. We find that the exponents needed to rescale the probability density functions (PDF) of the fluctuations are the same to within experimental error for all four quantities. This self-similarity persists for time scales up to ~4 hours for AU, AL and and up to ~2 hours for AE. Fluctuations on shorter time scales than these are found to have similar long-tailed (leptokurtic) PDF, consistent with an underlying turbulent process. These quantitative and model-independent results place important constraints on models for the coupled solar wind-magnetosphere system

    A unified description for nuclear equation of state and fragmentation in heavy ion collisions

    Full text link
    We propose a model that provides a unified description of nuclear equation of state and fragmentations. The equation of state is evaluated in Bragg-Williams as well as in Bethe-Peierls approximations and compared with that in the mean field theory with Skyrme interactions. The model shows a liquid-gas type phase transition. The nuclear fragment distributions are studied for different densities at finite temperatures. Power law behavior for fragments is observed at critical point. The study of fragment distribution and the second moment S2S_2 shows that the thermal critical point coincides with the percolation point at the critical density. High temperature behavior of the model shows characteristics of chemical equilibrium.Comment: 20 pages in RevTex, 11 figures (uuencoded ps files), to appear in Phys. Rev.

    Tidal dissipation in rotating giant planets

    Full text link
    [Abridged] Tides may play an important role in determining the observed distributions of mass, orbital period, and eccentricity of the extrasolar planets. In addition, tidal interactions between giant planets in the solar system and their moons are thought to be responsible for the orbital migration of the satellites, leading to their capture into resonant configurations. We treat the underlying fluid dynamical problem with the aim of determining the efficiency of tidal dissipation in gaseous giant planets. In cases of interest, the tidal forcing frequencies are comparable to the spin frequency of the planet but small compared to its dynamical frequency. We therefore study the linearized response of a slowly and possibly differentially rotating planet to low-frequency tidal forcing. Convective regions of the planet support inertial waves, while any radiative regions support generalized Hough waves. We present illustrative numerical calculations of the tidal dissipation rate and argue that inertial waves provide a natural avenue for efficient tidal dissipation in most cases of interest. The resulting value of Q depends in a highly erratic way on the forcing frequency, but we provide evidence that the relevant frequency-averaged dissipation rate may be asymptotically independent of the viscosity in the limit of small Ekman number. In short-period extrasolar planets, if the stellar irradiation of the planet leads to the formation of a radiative outer layer that supports generalized Hough modes, the tidal dissipation rate can be enhanced through the excitation and damping of these waves. These dissipative mechanisms offer a promising explanation of the historical evolution and current state of the Galilean satellites as well as the observed circularization of the orbits of short-period extrasolar planets.Comment: 74 pages, 12 figures, submitted to The Astrophysical Journa

    Elliptic flow in heavy ion collisions near the balance energy

    Get PDF
    The proton elliptic flow in collisions of Ca on Ca at energies from 30 to 100 MeV/nucleon is studied in an isospin-dependent transport model. With increasing incident energy, the elliptic flow shows a transition from positive to negative flow. Its magnitude depends on both the nuclear equation of state (EOS) and the nucleon-nucleon scattering cross section. Different elliptic flows are obtained for a stiff EOS with free nucleon-nucleon cross sections and a soft EOS with reduced nucleon-nucleon cross sections, although both lead to vanishing in-plane transverse flow at the same balance energy. The study of both in-plane and elliptic flows at intermediate energies thus provides a means to extract simultaneously the information on the nuclear equation of state and the nucleon-nucleon scattering cross section in medium.Comment: 6 pages, 2 figure

    Critical Enhancement of the In-medium Nucleon-Nucleon Cross Section at low Temperatures

    Full text link
    The in-medium nucleon-nucleon cross section is calculated starting from the thermodynamic T-matrix at finite temperatures. The corresponding Bethe-Salpeter-equation is solved using a separable representation of the Paris nucleon-nucleon-potential. The energy-dependent in-medium N-N cross section at a given density shows a strong temperature dependence. Especially at low temperatures and low total momenta, the in-medium cross section is strongly modified by in-medium effects. In particular, with decreasing temperature an enhancement near the Fermi energy is observed. This enhancement can be discussed as a precursor of the superfluid phase transition in nuclear matter.Comment: 10 pages with 4 figures (available on request from the authors), MPG-VT-UR 34/94 accepted for publication in Phys. Rev.
    corecore