3,281 research outputs found

    Magnetohydrodynamic turbulence in warped accretion discs

    Get PDF
    Warped, precessing accretion discs appear in a range of astrophysical systems, for instance the X-ray binary Her X-1 and in the active nucleus of NGC4258. In a warped accretion disc there are horizontal pressure gradients that drive an epicyclic motion. We have studied the interaction of this epicyclic motion with the magnetohydrodynamic turbulence in numerical simulations. We find that the turbulent stress acting on the epicyclic motion is comparable in size to the stress that drives the accretion, however an important ingredient in the damping of the epicyclic motion is its parametric decay into inertial waves.Comment: to appear in the proceedings of the 20th Texas Symposium on Relativistic Astrophysics, J. C. Wheeler & H. Martel (eds.

    Global axisymmetric Magnetorotational Instability with density gradients

    Get PDF
    We examine global incompressible axisymmetric perturbations of a differentially rotating MHD plasma with radial density gradients. It is shown that the standard magnetorotational instability, (MRI) criterion drawn from the local dispersion relation is often misleading. If the equilibrium magnetic field is either purely axial or purely toroidal, the problem reduces to finding the global radial eigenvalues of an effective potential. The standard Keplerian profile including the origin is mathematically ill-posed, and thus any solution will depend strongly on the inner boundary. We find a class of unstable modes localized by the form of the rotation and density profiles, with reduced dependence on boundary conditions.Comment: 22 pages, 5 figure

    The response of a turbulent accretion disc to an imposed epicyclic shearing motion

    Get PDF
    We excite an epicyclic motion, whose amplitude depends on the vertical position, zz, in a simulation of a turbulent accretion disc. An epicyclic motion of this kind may be caused by a warping of the disc. By studying how the epicyclic motion decays we can obtain information about the interaction between the warp and the disc turbulence. A high amplitude epicyclic motion decays first by exciting inertial waves through a parametric instability, but its subsequent exponential damping may be reproduced by a turbulent viscosity. We estimate the effective viscosity parameter, αv\alpha_{\rm v}, pertaining to such a vertical shear. We also gain new information on the properties of the disc turbulence in general, and measure the usual viscosity parameter, αh\alpha_{\rm h}, pertaining to a horizontal (Keplerian) shear. We find that, as is often assumed in theoretical studies, αv\alpha_{\rm v} is approximately equal to αh\alpha_{\rm h} and both are much less than unity, for the field strengths achieved in our local box calculations of turbulence. In view of the smallness (0.01\sim 0.01) of αv\alpha_{\rm v} and αh\alpha_{\rm h} we conclude that for β=pgas/pmag10\beta = p_{\rm gas}/p_{\rm mag} \sim 10 the timescale for diffusion or damping of a warp is much shorter than the usual viscous timescale. Finally, we review the astrophysical implications.Comment: 12 pages, 18 figures, MNRAS accepte

    Equity impacts of cycling investment in England: a natural experimental study using longitudinally linked individual-level census data.

    Get PDF
    BACKGROUND: Cycling is beneficial for health and the environment but the evidence on the overall and differential impacts of interventions to promote cycling is limited. Here we assess the equity impacts of funding awarded to support cycling in 18 urban areas between 2005 and 2011. METHODS: We used longitudinally linked 2001 and 2011 census data from 25,747 individuals in the Office for National Statistics Longitudinal Study of England and Wales. Logistic regression was used to assess the impacts of funding on commute mode as the interaction between time and area (intervention/comparison) in individual-level difference-in-difference analyses, adjusting for a range of potential confounding factors. Differential impacts were examined by age, gender, education and area-level deprivation, and uptake and maintenance of cycling were examined separately. RESULTS: Difference-in-difference analyses showed no intervention impact on cycle commuting prevalence in the whole sample (AOR = 1.08; 95% CI 0.92, 1.26) or among men (AOR = 0.91; 95% CI 0.76, 1.10) but found an intervention effect among women (AOR = 1.56; 95% CI 1.16, 2.10). The intervention promoted uptake of cycling commuting in women (AOR = 2.13; 95% CI 1.56, 2.91) but not men (AOR = 1.19; 95% CI 0.93, 1.51). Differences in intervention effects by age, education and area-level deprivation were less consistent and more modest in magnitude. CONCLUSIONS: Living in an intervention area was associated with greater uptake of cycle commuting among women but not men. Potential gender differences in the determinants of transport mode choice should be considered in the design and evaluation of future interventions to promote cycling

    Are Magnetic Wind-Driving Disks Inherently Unstable?

    Full text link
    There have been claims in the literature that accretion disks in which a centrifugally driven wind is the dominant mode of angular momentum transport are inherently unstable. This issue is considered here by applying an equilibrium-curve analysis to the wind-driving, ambipolar diffusion-dominated, magnetic disk model of Wardle & Konigl (1993). The equilibrium solution curves for this class of models typically exhibit two distinct branches. It is argued that only one of these branches represents unstable equilibria and that a real disk/wind system likely corresponds to a stable solution.Comment: 5 pages, 2 figures, to be published in ApJ, vol. 617 (2004 Dec 20). Uses emulateapj.cl

    StarBEAST2 Brings Faster Species Tree Inference and Accurate Estimates of Substitution Rates

    Get PDF
    Fully Bayesian multispecies coalescent (MSC) methods like *BEAST estimate species trees from multiple sequence alignments. Today thousands of genes can be sequenced for a given study, but using that many genes with *BEAST is intractably slow. An alternative is to use heuristic methods which compromise accuracy or completeness in return for speed. A common heuristic is concatenation, which assumes that the evolutionary history of each gene tree is identical to the species tree. This is an inconsistent estimator of species tree topology, a worse estimator of divergence times, and induces spurious substitution rate variation when incomplete lineage sorting is present. Another class of heuristics directly motivated by the MSC avoids many of the pitfalls of concatenation but cannot be used to estimate divergence times. To enable fuller use of available data and more accurate inference of species tree topologies, divergence times, and substitution rates, we have developed a new version of *BEAST called StarBEAST2. To improve convergence rates we add analytical integration of population sizes, novel MCMC operators and other optimizations. Computational performance improved by 13.5× and 13.8× respectively when analyzing two empirical data sets, and an average of 33.1× across 30 simulated data sets. To enable accurate estimates of per-species substitution rates, we introduce species tree relaxed clocks, and show that StarBEAST2 is a more powerful and robust estimator of rate variation than concatenation. StarBEAST2 is available through the BEAUTi package manager in BEAST 2.4 and above.This work was supported by a Rutherford Discovery Fellowship awarded to A.J.D. by the Royal Society of New Zealand. H.A.O. was supported by an Australian Laureate Fellowship awarded to Craig Moritz by the Australian Research Council (FL110100104)

    Contributions to the Fourth Solar Wind Conference

    Get PDF
    Recent results in interplanetary physics are examined. These include observations of shock waves and post-shock magnetic fields made by Voyager 1, 2; observations of the electron temperature as a function of distance between 1.36 AU and 2.25 AU; and observations of the structure of sector boundaries observed by Helios 1. A theory of electron energy transport in the collisionless solar wind is presented, and compared with observations. Alfven waves and Alvenic fluctuations in the solar wind are also discussed

    An alpha theory of time-dependent warped accretion discs

    Get PDF
    The non-linear fluid dynamics of a warped accretion disc was investigated in an earlier paper by developing a theory of fully non-linear bending waves in a thin, viscous disc. That analysis is here extended to take proper account of thermal and radiative effects by solving an energy equation that includes viscous dissipation and radiative transport. The problem is reduced to simple one-dimensional evolutionary equations for mass and angular momentum, expressed in physical units and suitable for direct application. This result constitutes a logical generalization of the alpha theory of Shakura & Sunyaev to the case of a time-dependent warped accretion disc. The local thermal-viscous stability of such a disc is also investigated.Comment: 16 pages, 3 figures, to be published in MNRA
    corecore