371 research outputs found

    Rifting and arc-related early Paleozoic volcanism along the North Gondwana margin: geochemical and geological evidence from Sardinia (Italy)

    Get PDF
    Three series of volcanic rocks accumulated during the Cambrian to Silurian in the metasediment-dominated Variscan basement of Sardinia. They provide a record of the changing geodynamic setting of the North Gondwana margin between Upper Cambrian and earliest Silurian. A continuous Upper Cambrian–Lower Ordovician succession of felsic submarine and subaerial rocks, dominantly transitional alkaline in character (ca. 492–480 Ma), is present throughout the Variscan nappes. Trace element data, together with Nd isotope data that point to a depleted mantle source, indicate an ensialic environment. A Middle Ordovician (ca. 465 Ma) calc-alkaline bimodal suite, restricted to the external Variscan nappes, overlies the Sardic Unconformity. Negative ϵNdi values (−3.03 to −5.75) indicate that the suite is a product of arc volcanism from a variably enriched mantle. A Late Ordovician–Early Silurian (ca. 440 Ma) volcano-sedimentary cycle consists of an alkalic mafic suite in a post-Caradocian transgressive sequence. Feeder dykes cut the pre-Sardic sequence. The alkali basalts are enriched in Nb-Ta and have Zr/Nb ratios in the range 4.20–30.90 (typical of a rift environment) and positive ϵNdi values that indicate a depleted mantle source. Trachyandesite lavas have trace element contents characteristic of within-plate basalt differentiates, with evidence of minor crustal contamination

    Hydrogeology and hydrogeochemistry of an alkaline volcanic area: the NE Mt. Meru slope (East African Rift – Northern Tanzania)

    Get PDF
    Abstract. The objective of this study is to analyze the geochemical conditions associated with the presence of fluoride (F−) in the groundwater of an area of Northern Tanzania. The studied aquifers are composed of volcanic rocks such as phonolitic and nephelinitic lavas, basalts, lahars of various ages and mantling ash. Sedimentary rocks consisting of fine-grained alluvial and lacustrine deposits occur as well. Samples collected from springs, borehole and surface water, during two monitoring surveys, were analyzed for the various physico-chemical and isotopic parameters. The geochemical composition of water is typically sodium bicarbonate. High values of F− (up to 68 mg l−1) were recorded. The highest values of fluoride agreed with the highest values of pH, sodium and bicarbonate. Dissolution of major ions, exchange processes and precipitation of Ca2+ from super-saturated solutions joined with the local permeability and hydraulic gradients, control the fluoride mobilization and the contamination of the area

    Tracing groundwater salinization processes in coastal aquifers: a hydrogeochemical and isotopic approach in Na-Cl brackish waters of north-western Sardinia, Italy

    Get PDF
    Abstract. Throughout the Mediterranean, salinization threatens water quality, especially in coastal areas. This salinization is the result of concomitant processes related to both seawater intrusion and water–rock interaction, which in some cases are virtually indistinguishable. In the Nurra region of northwestern Sardinia, recent salinization related to marine water intrusion has been caused by aquifer exploitation. However, the geology of this region records a long history from the Palaeozoic to the Quaternary, and is structurally complex and comprises a wide variety of lithologies, including Triassic evaporites. Determining the origin of the saline component of the Jurassic and Triassic aquifers in the Nurra region may provide a useful and more general model for salinization processes in the Mediterranean area, where the occurrence of evaporitic rocks in coastal aquifers is a common feature. In addition, due to intensive human activity and recent climatic change, the Nurra has become vulnerable to desertification and, in common with other Mediterranean islands, surface water resources periodically suffer from severe shortages. With this in mind, we report new data regarding brackish and surface waters (outcrop and lake samples) of the Na-Cl type from the Nurra region, including major ions and selected trace elements (B, Br, I, and Sr), in addition to isotopic data including δ18O, δD in water, and δ34S and δ18O in dissolved SO4. To identify the origin of the salinity more precisely, we also analysed the mineralogical and isotopic composition of Triassic evaporites. The brackish waters have Cl contents of up to 2025 mg L−1 , and the ratios between dissolved ions and Cl, with the exception of the Br / Cl ratio, are not those expected on the basis of simple mixing between rainwater and seawater. The δ18O and δD data indicate that most of the waters fall between the regional meteoric water line and the global meteoric water line, supporting the conclusion that they are meteoric in origin. A significant consequence of the meteoric origin of the Na-Cl-type water studied here is that the Br / Cl ratio, extensively used to assess the origin of salinity in fresh water, should be used with care in carbonate aquifers that are near the coast. Overall, δ34S and δ18O levels in dissolved SO4 suggest that water–rock interaction is responsible for the Na-Cl brackish composition of the water hosted by the Jurassic and Triassic aquifers of the Nurra, and this is consistent with the geology and lithological features of the study area. Evaporite dissolution may also explain the high Cl content, as halite was detected within the gypsum deposits. Finally, these Na-Cl brackish waters are undersaturated with respect to the more soluble salts, implying that in a climate evolving toward semi-arid conditions, the salinization process could intensify dramatically in the near future

    Trace and rare earth elements contents of a Sardinian sedimentary Mn-rich deposit: preliminary results.

    Get PDF
    Mn oxides are important scavengers of trace elements from waters. They often form deposits with high metals concentrations that sometimes have economic significance. Within a thick sedimentary deposits of northern Sardinia, Mn oxide mineralization was found as both matrix and coatings on clasts of a conglomeratic deposit, and subrounded nodules in residual clays. Lithiophorite and birnessite are the sole Mn phases that are also accompanied by variable amounts of Fe oxides and hydroxides, clay minerals, and phyllosilicates. Chemical analysis of the studied samples revealed high concentrations of most of trace metals (Co, Ni, Zn, Cu, Ba, Y, U and Pb) and all rare earth elements (REE). The latter were used to provide the first hypothesis regarding environmental conditions and chemical processes determining the precipitation of Mn oxides

    Natural radioactivity in Sardinian granite dimension stones

    Get PDF
    http://www.fe.infn.it/u/mantovani/CV/Proceedings/Puccini_10b.pd

    Geochronology of late Variscan magmatism of Sardinia: a review

    Get PDF
    Sardinia represents a southern transect of the Variscan Belt and is classically divided from SW to NE into a fold and thrust belt Foreland, Nappe zone and Axial zone. This latter high-grade domain is separated from the Nappe zone by the so-called Posada-Asinara Line. The whole metamorphic basement is intruded by many calc-alkaline coalescent plutons forming the Corsica-Sardinia Batholith. The timing of magmatism, in Sardinia, is broadly referable to a large interval in the range of 320-280 Ma. Recent geological maps coupled to several chronological systematics, point out to recognize two main post-collisional magmatic peaks clustered at about 305 Ma (Older Magmatic Peak, OMP) and at 285 Ma (Young Magmatic Peak, YMP), respectively. Plutons intruding different parts of the Sardinian basement show different geological styles. Among the OMP, main differences regard: (a) the granodiorite/granite volume ratio in the main plutons; (b) the abundance of peraluminous rock-types; (c) the occurrence of mafic intrusions; (d) the abundance of late-magmatic dyke swarms. The Axial zone is dominated by monzogranites and subordinate granodiorites and leucogranites (320-307 Ma); tonalites and granodiorites (305-300 Ma), along with peraluminous granites, characterize the inner Nappe zone (i.e., Goceano, Baronie, Barbagia). Remarkably, the oldest intrusions (i.e., Barrabisa and Santa Maria: 320 Ma) are foliated and may represent a prebatholith magmatic phase. Plutons occurring in the external Nappe zone and the Foreland are generally dominated by granodiorites (e.g., Arbus, Ogliastra, Sàrrabus: 305-300 Ma) associated to small gabbronoritic bodies. The YMP is marked in the Axial zone by large leucogranite intrusions (Monte Lerno); gabbroic intrusions are present at 285-280 Ma. The YMP is dominant in the external Nappe zone and in the Foreland. This peak include monzogranites and leucogranites with minor granodiorites; specific characters are: (a) common occurrence of F-bearing, ferroan, ilmeniteseries granitoids; (b) slightly peraluminous character; (c) very shallow emplacement levels, with common greisen alteration; (d) presence of Sn-W-Mo and F ores; (e) association to swarms of tholeiitic mafic dikes. The timing and distribution of Sardinian intrusive magmatism are tentatively framed during the post-collisional evolution of the chain, in response to progressive lithospheric delamination along a N-S direction. In this model, the passive upwelling of hot astenosphere triggered dehydration melting at lower to intermediate crustal levels, associated with minor melting of the lithospheric mantle. Several major issues emerge from this schematic picture, including (a) the precise timing of the magmatic peaks, (b) the significance of the gap between them, (c) the difference in volumes and spatial distribution of the main rock-suites, (d) the geological and petrological frame at the district- to single pluton-, up to regional scale, and (e) the age of mafic dyke swarms

    Comparative phenotypic and functional analyses of the effects of autologous plasma and recombinant human macrophage-colony stimulating factor (M-CSF) on porcine monocyte to macrophage differentiation

    Get PDF
    Abstract Porcine monocyte-derived macrophages (moMΦ) have been employed as a model cell in numerous studies of the porcine immune system. However, the lack of a standardized method for moMΦ differentiation hampers the comparison of results coming from the use of different laboratory protocols. In this study we compared the use of varying concentrations of autologous plasma (10, 20 and 30% v/v) or recombinant human macrophage-colony stimulating factor (hM-CSF; 50, 100, and 200 ng/ml) to differentiate porcine monocytes into macrophages. Changes in cell morphology and surface marker expression were assessed by confocal microscopy and flow cytometry. Macrophage differentiation was evaluated by analysing TNF-α response to LPS stimulation and determining cytokine secretion patterns under both basal conditions and after classical and alternative activation. The effects of the differentiation methods on metabolic activity and susceptibility to infection with the myelotropic African swine fever virus (ASFV) were also evaluated. Monocytes cultured using the different culture conditions tested augmented in dimension and cellular complexity, but increasing porcine plasma concentrations resulted in a dose dependent enhancement in granularity and a marked pleomorphism. As expected, CD163, MHC class II DR and CD203a expression were up-regulated in both hM-CSF (M-CSF-moMΦ) and autologous plasma cultured macrophages (AP-moMΦ), although a lower percentage of CD163+ cells were found following differentiation with high percentages of porcine plasma. We observed enhanced number of viable cells using high concentration of hM-CSF compared to porcine plasma, suggesting a proliferative effect. Irrespective of differentiation conditions, monocyte differentiation into macrophages resulted in an increased susceptibility to ASFV and yielded larger amounts of LPS-induced TNF-α. AP-moMΦ showed a higher basal release of IL-1RA compared to those cultured with hM-CSF and displayed a reduced ability to respond to classical activation, suggesting that the use of high percentages of porcine plasma led to the acquisition of a M2-like phenotype. We conclude that all the protocols tested in this study can be considered as suitable to produce porcine moMΦ, although the use of hM-CSF provides high responsiveness to M1 polarization. Since a higher phenotypic and functional inter-animal variability was observed in AP-moMΦ, we propose that the use of low concentration of hM-CSF should be adopted as the method of choice to provide a better reproducibility between experiments

    Ordovician tectonics of the South European Variscan Realm: new insights from Sardinia

    Get PDF
    Although much is known about the Ordovician tectonics of the South European Variscides, aspects of their geodynamic evolution and palaeogeographic reconstruction remain uncertain. In Sardinia, Variscan tectonic units include significant vestiges of Ordovician evolution, such as a fold system that affected only the Cambrian-Lower Ordovician successions, and are cut by a regional angular unconformity. A comparison of the stratigraphy and tectonic structures of the successions below and above the Lower Ordovician unconformity and a reinterpretation of biostratigraphic data allow us to identify significant differences between the stacked tectonic units. The unconformity is sealed as follows: (i) in the Sulcis-Iglesiente Unit (Variscan External Zone, SW Sardinia) by Middle-Upper Ordovician continental and tidal deposits; and (ii) in the Sarrabus and Gerrei units (part of the Variscan Nappe Zone, SE Sardinia) by Middle-Upper Ordovician calc-alkaline volcanic rocks. Therefore, at the same time, one tectonic unit was situated close to a rifting setting and the others were involved in a convergent margin. Of note are the different durations associated with the unconformities in the tectonic units (17 Myr in the Sulcis-Iglesiente Unit, 6 Myr in the Sarrabus and Gerrei units) and the occurrence (or absence) of glacio-marine deposits indicating that the units were located at different palaeo-latitudes during the Ordovician. These results suggest that the SW and SE Sardinia blocks did not share the same geodynamic setting during the Ordovician, implying that they were situated in different palaeogeographic positions at this time and subsequently amalgamated during the Variscan Orogeny. Furthermore, stratigraphic and tectonic correlations with neighbouring areas, such as the eastern Pyrenees, imply alternative palaeogeographic reconstructions to those proposed previously for some peri-Mediterranean Variscan terranes

    Effect of Nedocromil Sodium on Polymorphonuclear Leukocyte Plasma Membrane

    Get PDF
    The effect of nedocromil sodium on the plasma membrane fluidity of polymorphonuclear leukocytes (PMNs) was investigated by measuring steady-state fluorescence anisotropy of 1-[4-trimethylammonium-phenyl]-6-phenyl- 1,3,5-hexatriene (TMA-DPH) incorporated in the membrane. Our results show that nedocromil sodium 300 μM significantly decreased membrane fluidity of PMNs. The decrease in membrane fluidity of PMNs induced by fMLP was abolished in the presence of nedocromil sodium. These data suggest that nedocromil sodium interferes with the plasma membranes of PMNs and modulates their activities
    • …
    corecore