11,170 research outputs found

    Topology conserving gauge action and the overlap-Dirac operator

    Get PDF
    We apply the topology conserving gauge action proposed by Luescher to the four-dimensional lattice QCD simulation in the quenched approximation. With this gauge action the topological charge is stabilized along the hybrid Monte Carlo updates compared to the standard Wilson gauge action. The quark potential and renormalized coupling constant are in good agreement with the results obtained with the Wilson gauge action. We also investigate the low-lying eigenvalue distribution of the hermitian Wilson-Dirac operator, which is relevant for the construction of the overlap-Dirac operator.Comment: 27pages, 11figures, accepted versio

    Optical properties of quantum wires: Disorder-scattering in the Lloyd-model

    Full text link
    The Lloyd model is extended to the exciton problem in quasi one-dimensional structures to study the interplay between the Coulomb attraction and disorder scattering. Within this model the averaging and resummation of the locator series can be performed analytically. As an application, the optical absorption in quantum box wires is investigated. Without electron-hole interaction, fluctuations in the well-width lead to an asymmetric broadening of the minibands with respect to the lower and upper band-edges.Comment: 7 pages, 6 figure

    Origin of complexity in multicellular organisms

    Full text link
    Through extensive studies of dynamical system modeling cellular growth and reproduction, we find evidence that complexity arises in multicellular organisms naturally through evolution. Without any elaborate control mechanism, these systems can exhibit complex pattern formation with spontaneous cell differentiation. Such systems employ a `cooperative' use of resources and maintain a larger growth speed than simple cell systems, which exist in a homogeneous state and behave 'selfishly'. The relevance of the diversity of chemicals and reaction dynamics to the growth of a multicellular organism is demonstrated. Chaotic biochemical dynamics are found to provide the multi-potency of stem cells.Comment: 6 pages, 2 figures, Physical Review Letters, 84, 6130, (2000

    Heavy Fermion Behavior, Crystalline Electric Field Effects, and Weak Ferromagnetism in SmOs_{4}Sb_{12}

    Full text link
    The filled skutterudite compound SmOs_{4}Sb_{12} was prepared in single crystal form and characterized. The SmOs_{4}Sb_{12} crystals have the LaFe_{4}P_{12}-type structure with lattice parameter a = 9.3085 Angstroms. Specific heat measurements indicate a large electronic specific heat coefficient of ~880 mJ/mol K^{2}, from which an enhanced effective mass m^{*} ~ 170 m_{e} is estimated. The specific heat data also suggest crystalline electric field (CEF) splitting of the Sm^{3+} J = 5/2 multiplet into a Gamma_{7} doublet ground state and a Gamma_{8} quartet excited state separated by 37 K. Electrical resistivity rho(T) measurements reveal a decrease in rho(T) below ~50 K that is consistent with CEF splitting of ~33 K between a Gamma_(7) doublet ground state and Gamma_{8} quartet excited state. Specific heat and magnetic susceptibility measurements display a possible weak ferromagnetic transition at ~2.6 K, which could be an intrinsic property of SmOs_4Sb_{12} or possibly due to an unknown impurity phase.Comment: 24 pages, 11 Postscript figures, to be published in Physical Review

    Mechanical motion promotes expression of Prg4 in articular cartilage via multiple CREB-dependent, fluid flow shear stress-induced signaling pathways

    Get PDF
    Lubricin is a secreted proteoglycan encoded by the Prg4 locus that is abundantly expressed by superficial zone articular chondrocytes and has been noted to both be sensitive to mechanical loading and protect against the development of osteoarthritis. In this study, we document that running induces maximal expression of Prg4 in the superficial zone of knee joint articular cartilage in a COX-2-dependent fashion, which correlates with augmented levels of phospho-S133 CREB and increased nuclear localization of CREB-regulated transcriptional coactivators (CRTCs) in this tissue. Furthermore, we found that fluid flow shear stress (FFSS) increases secretion of extracellular PGE2, PTHrP, and ATP (by epiphyseal chondrocytes), which together engage both PKA- and Ca++-regulated signaling pathways that work in combination to promote CREB-dependent induction of Prg4, specifically in superficial zone articular chondrocytes. Because running and FFSS both boost Prg4 expression in a COX-2-dependent fashion, our results suggest that mechanical motion may induce Prg4 expression in the superficial zone of articular cartilage by engaging the same signaling pathways activated in vitro by FFSS that promote CREB-dependent gene expression in this tissue.National Institute of Arthritis and Musculoskeletal and Skin Diseases (U.S.) (Grant AR60331

    Monte Carlo integration in Glauber model analysis of reactions of halo nuclei

    Full text link
    Reaction and elastic differential cross sections are calculated for light nuclei in the framework of the Glauber theory. The optical phase-shift function is evaluated by Monte Carlo integration. This enables us to use the most accurate wave functions and calculate the phase-shift functions without approximation. Examples of proton nucleus (e.g. p-6^6He, p-6^6Li) and nucleus-nucleus (e.g. 6^6He−12-^{12}C) scatterings illustrate the effectiveness of the method. This approach gives us a possibility of a more stringent analysis of the high-energy reactions of halo nuclei.Comment: 20 pages, 8 figure
    • 

    corecore