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We apply the topology conserving gauge action proposed by Lüscher to the four-dimensional lattice
QCD simulation in the quenched approximation. With this gauge action the topological charge is
stabilized along the hybrid Monte Carlo updates compared to the standard Wilson gauge action. The
quark potential and renormalized coupling constant are in good agreement with the results obtained with
the Wilson gauge action. We also investigate the low-lying eigenvalue distribution of the Hermitian
Wilson-Dirac operator, which is relevant for the construction of the overlap-Dirac operator.
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I. INTRODUCTION

Chiral symmetry and topology are tightly related with
each other in the gauge field theory through the quantum
correction. Namely, the axial anomaly appears at the one-
loop level, and its integral over space-time leads to the
topological charge of the background gauge field. In prin-
ciple, one should be able to analyze the implication of this
relation for physical observables, such as the neutron elec-
tric dipole moment, using the lattice gauge theory, which
provides a rigorous formulation of the non-Abelian gauge
theories even in the nonperturbative regime. Such study is
very difficult with the Wilson-type Dirac operator, since
the chiral symmetry is explicitly violated on the lattice.

The overlap-Dirac operator [1,2]

D �
1

�a
�1� �5sgn�aHW��; �a �

a
1� s

; (1)

realizes the exact chiral symmetry at finite lattice spacing a
[3] satisfying the Ginsparg-Wilson relation [4]

�5D�D�5 � aD�5D: (2)

It is constructed from the Wilson-Dirac operator aDW with
the Wilson parameter r � 1; the Hermitian Wilson-Dirac
operator aHW � �5�aDW � 1� s� enters as an argument
of the sign function sgn�x�. The parameter s in (1) is a fixed
number in the region jsj< 1.

Since the definition (1) contains a nonsmooth function,
the locality of the Dirac operator could be lost when there
are near-zero eigenvalues of jaHW j. This is consistent with
the index theorem, because the index of the Dirac operator,
which may be considered as a definition of the topological
charge, is a nonsmooth function of the background gauge
field. When the topological charge changes the value, the
Dirac operator must become ill defined, and this is exactly
the point where aHW has a zero eigenvalue.

The locality of the overlap-Dirac operator (1) is guaran-
teed for the gauge fields on which the minimum eigenvalue

of jaHW j is bounded from below by a positive (nonzero)
constant [5]. This condition is proved to be satisfied if the
gauge field configuration is smooth and each plaquette is
close enough to one;

k1� P���x�k< � for all x; ��; ��: (3)

Here, P���x� is the plaquette variable at x on the �-�
plane, and k � � � k denotes the norm of the operator. In
the four-dimensional case, the parameter � ’ 1=20:49 is
a sufficient (but not a necessary) condition [6]. This is
called the ‘‘admissibility’’ bound.

One can construct a gauge action, which generates
gauge configurations respecting the condition (3). For in-
stance, Lüscher proposed the action [7]

SG�
�
�
P
P

1�ReTrP���x�=3
1��1�ReTrP���x�=3�=�;

1

when 1�ReTrP���x�=3<�;
otherwise

;

(4)

which has the same continuum limit as the standard Wilson
gauge action does. In fact, the limit � � 1 corresponds to
the standard Wilson gauge action. Unfortunately, the
bound � ’ 1=20:49 is too tight to produce gauge field
ensembles corresponding to the lattice spacing around
0.1 fm; for practical purposes, one must choose much
larger values of �. An interesting question is, then, whether
the action can keep the good properties for � significantly
larger than 1=20:49. To be explicit, one expects that (i) the
topology change during the molecular-dynamics-type
simulation is suppressed, and (ii) the appearance of the
near-zero eigenvalue of jaHW j is suppressed, compared to
the standard Wilson gauge action. The point (i) is impor-
tant in order to efficiently generate gauge configurations
with large topological charge, which is necessary for the
study of the �-regime or the �-vacuum. With the point (ii),
the locality of the overlap-Dirac operator is improved, and
the numerical cost to apply the overlap-Dirac operator is
reduced. In the numerical application to the massive
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Schwinger model with � � 1, the stability of the topologi-
cal charge and the improvement of the chiral symmetry
with the domain-wall fermion were observed [8,9]. Also,
in the four-dimensional quenched QCD, good stability of
the topological charge has been reported [10–13].

For gauge actions to be useful in practical simulations,
good scaling property toward the continuum limit is re-
quired. The action (4) differs from the standard Wilson
gauge action only at O�a4�, and we expect that it ap-
proaches to the continuum limit as quickly as the standard
action does. The scaling would be better for the improved
gauge actions, such as the Lüscher-Weisz [14], Iwasaki
[15], or DBW2 [16] gauge actions, but an advantage of (4)
is that it contains a parameter which directly controls the
admissibility bound and thus the appearance of the low-
lying modes of aHW . For the improved actions including
the rectangle loop, on the other hand, the low-lying modes
are suppressed for large values of the rectangle coupling
(e.g. with the DBW2 action) at the price of loosing the
good scaling for short distance quantities [17].

The goal of this paper is to give a systematic quenched
QCD study of the topology conserving gauge action. We
find that the topology change is indeed suppressed when
the parameter � is of order one. We also find that the
scaling violation in the static quark potential remains
reasonably small and the tadpole improved perturbation
theory for the renormalized gauge coupling shows a good
convergence in the parameter range of our study.
Therefore, the topology conserving gauge action has de-
sired properties for a practical application. Here we would
like to comment on the possible application for the future
work with the dynamical overlap fermion. In the standard
method, with the Wilson plaquette action, one projects out
the smallest eigenmodes of HW at every molecular dynam-
ics step in the simulation trajectory and judges if the
topology change occurs or not. When the topology change
occurs, one recalculates the link update with much higher
accuracy on the topology crossing point to choose either
entering the new sector (refraction) or going back to the
previous sector (reflection) [18]. If one omits this step it
would make the acceptance very low due to the non-
smoothness of the determinant as a functional of the gauge
configuration. On the other hand, if one uses the topology
conserving action, crossing HW � 0 can be strongly sup-
pressed, so that one can avoid the CPU time consuming
reflection/refraction method. In this sense, the use of the
topology conserving gauge action can also be useful in full
QCD simulations with the overlap fermions. Combination
with the stout link version of the overlap fermion [19]
would be interesting as well.

This paper is organized as follows. After describing the
simulation methods in Section II, we show the fundamental
scaling studies in Section III, that is the determination of
the lattice spacing and a scaling test with the static quark
potential. Renormalization of the coupling constant with

the action (4) can be estimated using perturbation theory as
described in Section IV. Section V is the main part of this
paper; we report how much the topology change may occur
with different choices of parameters. In Section VI the
locality and the numerical costs of the overlap fermion
with gauge fields satisfying the bound (3) are discussed.
Conclusion and outlook are given in Section VII.

II. LATTICE SIMULATIONS

Although several types of the gauge action that generate
the ‘‘admissible’’ gauge fields satisfying the bound (3) are
proposed [10,11], we take the simplest choice (4). We
study three values of 1=�: 1, 2=3, and 0. Note that 1=� �
0 corresponds to the conventional Wilson gauge action.
The value 1=� � 2=3 is the boundary, below this value the
gauge links can take any value in the gauge group SU�3�
and the positivity is guaranteed [20].

The link variables are generated with the standard hybrid
Monte Carlo (HMC) algorithm [21]. We take the molecular
dynamics step size �� in the range 0.01–0.02 and the
number of steps in a unit trajectory Nmds � 20-40.
During the molecular dynamics steps we monitor that the
condition 1� ReTrP���x�=3< � is always satisfied with
our choice of the step size. We discarded at least 2000
trajectories for thermalization before measuring
observables.

In order to measure the topological charge, we develop a
new type of cooling method. It consists of the hybrid
Monte Carlo simulation with an exponentially increasing
� value �cool and decreasing step size ��cool as a function
of trajectory nt, i.e.

�cool � �init 	 �1:5�nt ; ��cool � ��init 	 �1:5��nt=2;

(5)

with a fixed 1=�cool. Note that
����������
�cool

p
��cool is fixed so that

the evolution at each step is kept small. This method allows
us to ‘‘cool’’ the configuration smoothly, keeping the ad-
missibility bound (3) with 1=� � 1=�cool. For the parame-
ters, we take ��init;��init; 1=�cool� � �2:0; 0:01; 1� for the
configurations generated with 1=� � 1, and (3.5, 0.01,
2=3) for the configurations with 1=� � 2=3 or 1=� � 0.
Even for the gauge configuration generated with the stan-
dard gauge action (1=� � 0), the condition 1=�cool � 2=3
can be used because it allows all values of SU�3�. After
50–200 steps, the link variables are cooled down close to a
classical solution in each topological sector. In fact, the
geometrical definition of the topological charge [22]

Qgeo 

1

32�2

X
x

���	
ReTr�P���x�P	
�x�� (6)

of these ‘‘cooled’’ configurations gives numbers close to an
integer times a universal factor Z�1

geo. Namely, Q �
ZgeoQgeo is close to an integer. We determine Zgeo through
would-beQ � 1 gauge configurations, as Z�1

geo � 0:923�4�.
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As Fig. 1 shows, the topological charge Q is consistent
with the index of the overlap-Dirac operator with s � 0:6,
which is calculated as described in Section VI. The con-
sistency is better for 1=� � 1 than for the standard Wilson
gauge action 1=� � 0.

To generate topologically nontrivial gauge configura-
tions, we start the hybrid Monte Carlo simulation with
the initial condition

U1�x� �
e2�ix4Q=L2

1
e�2�ix4Q=L2

0
B@

1
CA;

U2�x� �
1

e2�ix3�x2 ;L�1=L

e�2�ix3�x2 ;L�1=L

0
@

1
A;

U3�x� �
1

e�2�ix2=L2

e2�ix2=L2

0
@

1
A;

U4�x� �
e�2�ix1Q�x4 ;L�1=L

1
e2�ix1Q�x4 ;L�1=L

0
B@

1
CA;

(7)

which is a discretized version of the classical solution on a
four-dimensional torus [23]. It can be used for any integer
value of Q. We confirmed that the topological charge
assigned in this way agrees with the index of the overlap
operator with s � 0:6.

We summarize the simulation parameters and the pla-
quette expectation values (for the run with the initial
configuration with Q � 0) in Table I. The length of unit
trajectory is 0.2–0.4, and the step size is chosen such that
the acceptance rate becomes larger than �70%.

III. STATIC QUARK POTENTIAL

In this section we describe the measurement of the static
quark potential to determine the lattice spacing for each
parameter choice. We then compare the scaling violation
and the rotational symmetry violation with the case of the
standard Wilson gauge action. In the following, we assume
that the topology of the gauge field does not affect the
Wilson loops, and choose the run with Q � 0 initial con-
figuration for the measurement.
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FIG. 1 (color online). Comparison of the topological charge Q, calculated from the geometrical definition Qgeo (6) as Q � ZgeoQgeo,
with the index of the overlap-Dirac operator. Qgeo is obtained by the cooling method (stars), and the index (pluses) is calculated for the
overlap-Dirac operator with s � 0:6. The agreement is better for 1=� � 1 (left) than for 1=� � 0 (right).

TABLE I. Simulation parameters and the plaquette expecta-
tion values (for the run with the initial configuration with Q �
0).

Lattice size 1=� � �� Nmds Acceptance Plaquette

124 1 1.0 0.01 40 89% 0.539 127(9)
1.2 0.01 40 90% 0.566 429(6)
1.3 0.01 40 90% 0.578 405(6)

2=3 2.25 0.01 40 93% 0.551 02(1)
2.4 0.01 40 93% 0.568 61(1)
2.55 0.01 40 93% 0.584 35(1)

0 5.8 0.02 20 69% 0.567 63(5)
5.9 0.02 20 69% 0.581 90(3)
6.0 0.02 20 68% 0.593 64(2)

164 1 1.3 0.01 20 82% 0.578 40(1)
1.42 0.01 20 82% 0.591 67(1)

2=3 2.55 0.01 20 88% 0.584 28(2)
2.7 0.01 20 87% 0.598 62(1)

0 6.0 0.01 20 89% 0.593 82(5)
6.13 0.01 40 88% 0.607 11(4)

204 1 1.3 0.01 20 72% 0.578 47(9)
1.42 0.01 20 74% 0.591 65(1)

2=3 2.55 0.01 20 82% 0.584 38(2)
2.7 0.01 20 82% 0.598 65(1)

0 6.0 0.015 20 53% 0.593 82(4)
6.13 0.01 20 83% 0.607 16(3)
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We measure the Wilson loopsW�~r; t� using the smearing
technique according to [24], where the spatial separation
~r=a is taken to be an integer multiples of elementary
vectors ~v � �1; 0; 0�, (1,1,0), (2,1,0), (1,1,1), (2,1,1),
(2,2,1). With the assumption that the Wilson loop is an
exponential function for large temporal side t=a,
hW�~r; t�i � exp��V�~r�t�, we extract the static quark po-

tential aV�~r�. The measurements are done every 20 tra-
jectories and the errors are estimated by the jackknife
method.

As a reference scale, we measure the Sommer scales r0

and rc [25,26] defined as r2
0F�r0� � 1:65 and r2

cF�rc� �
0:65, respectively. Here, the force F�r� on the lattice is
given by a derivative in the direction of ~u=a � �1; 0; 0�;

TABLE II. Sommer scales r0=a, rc=a and their ratio.

Lattice size 1=� � Statistics r0=a rc=a rc=r0

124 1 1.0 3800 3.257(30) 1.7081(50) 0.5244(52)
1.2 3800 4.555(73) 2.319(10) 0.5091(81)
1.3 3800 5.140(50) 2.710(14) 0.5272(53)

2=3 2.25 3800 3.498(24) 1.8304(60) 0.5233(41)
2.4 3800 4.386(53) 2.254(10) 0.5141(61)
2.55 3800 5.433(72) 2.809(18) 0.5170(67)

164 1 1.3 2300 5.240(96) 2.686(13) 0.5126(98)
1.42 2247 6.240(89) 3.270(26) 0.5241(83)

2=3 2.55 1950 5.290(69) 2.738(15) 0.5174(72)
2.7 2150 6.559(76) 3.382(22) 0.5156(65)

Continuum limit [26] 0.5133(24)

TABLE III. Potential and force values for the case that ~r=a is an integer multiples of the unit
vector ~u=a � �1; 0; 0�. Results for 1=� � 1.

1=� � 1 124 164

� r=a rI=a aV�~r� r2
IF�rI� aV�~r� r2

IF�rI�
1.0 1 0.504 59(20)

2 1.36 0.778 28(61) 0.5056(10)
3 2.28 0.9629(15) 0.9520(69)
4 3.31 1.1176(27) 1.691(26)
5 4.36 1.2623(45) 2.751(80)
6 5.39 1.4052(77) 4.33(22)

1.2 1 0.448 77(16)
2 1.36 0.659 82(39) 0.389 93(65)
3 2.28 0.782 91(80) 0.6346(34)
4 3.31 0.8775(13) 1.034(10)
5 4.36 0.9588(29) 1.545(45)
6 5.39 1.0322(47) 2.23(12)

1.3 1 0.427 30(10) 0.427 09(20)
2 1.36 0.617 11(34) 0.352 52(99) 0.617 10(66) 0.350 99(68)
3 2.28 0.721 40(69) 0.539 09(48) 0.721 30(92) 0.5490(29)
4 3.31 0.7977(12) 0.848(14) 0.7961(15) 0.8325(81)
5 4.36 0.8608(21) 1.240(36) 0.8583(23) 1.180(32)
6 5.39 0.9230(25) 1.887(85) 0.9150(27) 1.809(79)
7 6.41 0.9636(51) 1.93(24)
8 7.43 1.0215(51) 3.09(37)

1.42 1 0.404 43(15)
2 1.36 0.574 16(43) 0.314 44(58)
3 2.28 0.660 91(75) 0.4567(22)
4 3.31 0.7200(12) 0.6583(61)
5 4.36 0.7691(17) 0.940(14)
6 5.39 0.8076(24) 1.189(48)
7 6.41 0.8457(30) 1.675(64)
8 7.43 0.8832(37) 1.91(14)

FUKAYA, HASHIMOTO, HIROHASHI, OGAWA, AND ONOGI PHYSICAL REVIEW D 73, 014503 (2006)

014503-4



a2F�rI� �
aV� ~r� � aV� ~r� ~u�

j ~u=aj
; (8)

for ~r=j ~rj � �1; 0; 0�. rI is introduced to cancel the discre-
tization error in the short distances, using the one-gluon
exchange potential on the lattice

1

4��rI=a�2
� �

aG�~r� � aG� ~r� ~u�
j ~u=aj

;

aG�~r� �
Z �

��

d3k

�2��3

Q3
j�1 cos�rjkj=a�

4
P3
j�1 sin2�kj=2�

:

(9)

In Table II we list the values of the Sommer scales r0=a,
rc=a as well as their ratio rc=r0. The numerical results for
aV�~r� and r2

IF�rI� for the case that ~r=a is an integer
multiples of ~u=a are given in Tables III and IV. The values
of rI=a are also listed.

The scaling can be tested for the ratio rc=r0. Figure 2
presents the a2 dependence of this ratio for different values
of 1=�. Our results for 1=� � 2=3 and 1 are in perfect
agreement with the previous high statistics study for the
standard Wilson gauge action by Necco and Sommer [26].
Moreover, we do not find any statistically significant scal-

TABLE IV. Same as Table III, but for 1=� � 2=3.

1=� � 2=3 124 164

� r=a rI=a aV�~r� r2
IF�rI� aV�~r� r2

IF�rI�

2.25 1 0.48470(15)
2 1.36 0.74012(57) 0.471 89(97)
3 2.28 0.9077(13) 0.8640(56)
4 3.31 1.0463(22) 1.515(21)
5 4.36 1.1701(38) 2.353(64)
6 5.39 1.2901(58) 3.64(15)

2.4 1 0.449 08(12)
2 1.36 0.664 34(41) 0.397 70(70)
3 2.28 0.791 52(84) 0.6557(37)
4 3.31 0.8889(15) 1.065(12)
5 4.36 0.9749(23) 1.635(32)
6 5.39 1.0541(30) 2.401(74)

2.55 1 0.420 13(11) 0.420 42(16)
2 1.36 0.606 82(36) 0.344 93(58) 0.607 86(51) 0.345 90(72)
3 2.28 0.708 26(72) 0.5230(28) 0.712 27(95) 0.5337(32)
4 3.31 0.7806(13) 0.7913(90) 0.7878(16) 0.8211(93)
5 4.36 0.8430(18) 1.187(18) 0.8538(22) 1.210(21)
6 5.39 0.8986(23) 1.686(37) 0.9157(29) 1.765(47)
7 6.41 0.9710(43) 2.229(84)
8 7.43 1.0266(52) 2.94(15)

2.7 1 0.395 90(15)
2 1.36 0.561 00(44) 0.306 50(53)
3 2.28 0.647 33(62) 0.4456(22)
4 3.31 0.705 27(90) 0.6329(56)
5 4.36 0.7528(14) 0.907(14)
6 5.39 0.7937(19) 1.309(28)
7 6.41 0.8321(24) 1.531(44)
8 7.43 0.8703(29) 2.035(80)
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FIG. 2 (color online). A ratio of the Sommer scales rc=r0.
Squares and triangles are data for the topology conserving gauge
action with 1=� � 2=3 and 1, respectively. Open circles repre-
sent the standard Wilson gauge action (from [26]) and the filled
circle is their continuum limit.
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ing violation except for the coarsest lattice points around
�a=r0�

2 ’ 0:1.
Figure 3 shows a comparison of the potential itself in a

dimensionless combination, i.e. r0V̂�~r� 
 r0�V� ~r� �
V�rc�� versus j ~rj=r0. For V�rc� we interpolate the data in
the direction ~r=r � �1; 0; 0�. The data at � � 1:3, 1=� � 1
are plotted together with the curve representing the con-
tinuum limit obtained in [26]. The agreement is satisfac-
tory (less than two sigma) for long distances r=r0 * 0:5.

For short distances, on the other hand, we can see
deviations of order 10%, as shown in Fig. 4, where a ratio
�V̂�~r� � V̂cont�j ~rj��=V̂cont�j~rj� is plotted. V̂cont�j~rj� repre-
sents the curve in the continuum limit drawn in Fig. 3.
The points corresponding to the separation ~r=a � �1; 0; 0�
and (2,0,0) deviates significantly from zero in the upward
direction, while the points (1,1,0) and (1,1,1) are lower
than zero. This implies the rotational symmetry violation.
Figure 5 (left panel) shows the size of the rotational sym-
metry violation at the point (1,0,0) as a function of the
lattice spacing. We find that the size of the violation is quite
similar for different values of 1=� including the standard
Wilson gauge action. It does not show a tendency that the
rotational symmetry violation goes to zero in the contin-
uum limit, but this makes sense because the relevant scale
of the observable is also diverging as 1=a. After correcting
the tree-level violation by introducing dI as 1=�4�dI� �
G�d�, which is an analogue of rI in (9) but is defined for the
potential, we obtain the plot on the right panel of Fig. 5. It
is indeed improved. The remaining correction is of order
�s�1=a�, which vanishes as �1= ln�1=a� near the contin-
uum limit.

These observations are consistent with the fact that the
topology conserving gauge action has the same O�a2�
scaling violation as the standard Wilson gauge action.
The difference starts at O�a4�, which is not visible at the
level of precision in our numerical study.

Finally, we confirm our assumption that the topology
does not affect the quark potential by measuring r0 for two
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initial values ofQ (0 and�3). Measurements are done on a
164 lattice at � � 1:42, 1=� � 1, for which the probability
of the topology change is extremely small as discussed in
the next section. Our results are r0=a � 6:24�9� for the
Q � 0 initial condition and 6.11(13) for Q � �3.

IV. PERTURBATIVE RENORMALIZATION OF
THE COUPLING

In this section, we study whether the perturbative cor-
rections are under control with the topology conserving
gauge action.

Two-loop corrections to the gauge coupling for general
actions constructed by the plaquette is available in [27].
Using that formula, the renormalized gauge couping gM
defined in the so-called Manton scheme is given by

1

g2
M
�

1

g2 � A1 � A2g2; (10)

where the coefficients A1, A2 are calculated as

A1 � s4
2N3

c � 3

Nc
� t4�N

2
c � 1�;

A2 � aR�s4�2N2
c � 3� � t4Nc�N2

c � 1��

� s6
15�N4

c � 3N2
c � 3�

8N2
c

� u6
3�2N2

c � 3��N2
c � 3�

8Nc

� t6
3

8
�N2

c � 1��N2
c � 3� � s2

4

9N4
c � 30N2

c � 36

2N2
c

� 2s4t4
�2N2

c � 3��N2
c � 2�

Nc
� t24�N

2
c � 1��N2

c � 2�:

(11)

Here, the parameters are Nc � 3, s4 � �1=4!, s6 � 1=6!,
t4 � 1=�4Nc��, t6 � 1=�8N2

c�2�, u6 � �1=�4!Nc��, and
aR � �0:0011�2�. Table V gives the next-to-leading and
next-to-next-to-leading order coefficients A1 and A2 for
various values of �.

Since the perturbative expansion is poorly converging if
one uses the bare lattice coupling, we also consider the
mean field improvement using the measured value of the
plaquette expectation value [28]. To do so, we need a
perturbative expectation value of the plaquette expectation
value, which is available to the two-loop order for the
general one-plaquette action [29] as

hW�1;1�i � 1� g2 �N
2
c � 1�

Nc
�W2�1;1� � g

4�N2
c � 1�X�1;1�

� g4 �2N
2
c � 3��N2

c � 1�

6N2
c

�W2�1;1�
2

� g4 �N
2
c � 1�

6Nc
CZ�1;1�: (12)

Here the notations �W2�1; 1� and X�1; 1� are from the origi-
nal calculation [30] for the standard Wilson gauge action,
and Z�1; 1� � �1� 1=V� �W2�1; 1�=4 (on a symmetric lat-
tice V � L4) is introduced for generalization. Their values
are �W2�1; 1� � 1=8, X�1; 1� � �1:01	 10�4, and
Z�1; 1� � 1=32 in the infinite volume limit. The constant
C is written as

C �
�X
R

6g2 sR���T�R�C2�R�
dR

� Nc

�
; (13)

where C2�R� is the quadratic Casimir operator in a repre-
sentation R of the group SU�Nc�. dR denotes the dimension
of the representation R, and T�R� is defined such that
TrR�t

atb� � T�R��ab for the group generator ta in the
representation R. The coupling sR��� is defined when we
rewrite the gauge action in terms of a general form of the
one-plaquette action

SG �
X
x;�;�

X
R

sR���
�

1�
1

dR
ReTrRP

R
���x�

�
; (14)

where PR�� denotes the plaquette in the R representation.
The values of these parameters for the topology conserving
gauge action (4) are

s3��� �
�
1�

11

6�

�
�; s6��� � �

1

3�
�;

s8��� � �
4

9�
�;

(15)

and T�3� � 1=2, T�6� � 5=2, T�8� � 3, C2�3� � 4=3,
C2�6� � 10=3, C2�8� � 3. Using these numbers, we obtain
C � 5� 20=� and finally

hW�1; 1�i � 1�
g2

3
�

�
5

18�
�

5

144

�
g4: (16)

TABLE V. Next-to-leading and next-to-next-to-leading order coefficients for the coupling
renormalization for various �. Mean field improved coefficients A1 � B1, A2 � B2 are also
shown. See the text for details.

1=� A1 A2 B1 B2 A1 � B1 A2 � B2

0 �0:208 33 �0:030 56 �0:333 33 �0:034 72 0.125 00 0.004 16
2=3 0.347 22 �0:047 83 0.111 11 �0:050 15 0.236 11 0.002 33
1 0.625 00 �0:102 76 0.333 33 �0:131 94 0.291 67 0.029 19
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We define a boosted coupling �g2 as

1

�g2 �
P

g2

�
1

1� �1� P�=�
�

�1� P�=�

�1� �1� P�=��2

�
; (17)

with the measured value of the plaquette expectation value
P � hW�1; 1�i (see Table I). It is defined to be a factor in
front of F2

�� when we rewrite P�� � P exp�ia2F��� and
expand the action (4). The perturbative expansion of (17)
becomes

1

�g2 �
1

g2 � B1 � B2g2; (18)

where

B1 � �
1

3

�
1�

2

�

�
;

B2 �

�
1�

2

�

��
5

18�
�

5

144

�
�

2

9�
�

1

3�2 :

(19)

We then obtain the perturbative expansion of the Manton
scheme coupling in terms of the boosted coupling

1

g2
M
�

1

�g2 � �A1 � B1� � �A2 � B2� �g
2: (20)

Numerical values of Bi and Ai � Bi are listed in Table V.
We can confirm the effect of the mean field improvement;
the two-loop coefficient A2 is significantly reduced by
reorganizing the perturbative expansion as in (20).

Using these results, the inverse squared renormalized
coupling in the Manton scheme is obtained for each lattice
parameter. In Fig. 6 we plot the coupling evaluated at a

reference scale 5=r0 as a function of lattice scaling
squared. We use the two-loop renormalization equation
for the evolution to the reference scale. Although the
couplings are very different at the tree level, the one-loop
results are already in good agreement among the different
values of 1=�. Including the two-loop corrections, we find
that the perturbative expansion converges very well and the
agreement among different 1=� becomes even better. Good
scaling toward the continuum limit can also be observed in
this plot for the two-loop results.

V. STABILITY OF THE TOPOLOGICAL CHARGE

In this section we discuss the stability of the topological
charge with the topology conserving gauge action.

How the topological charge is preserved can be easily
explained in the U�1� gauge theory in two dimension, for
which we can define an exact geometrical definition of the
topological charge [7,31]

Qgeo �
1

2�

X
x

1

2
���Flat

���x�; Flat
���x� � �i ln�P���x��;

� �< Flat
���x� � �: (21)

P���x� denotes the plaquette in the U�1� gauge theory. In
two dimensions, Qgeo gives an integer on the lattices with
the periodic boundary condition. The topological charge
may change its value when the field strength passes
through the point Flat

���x� � 
�. Since the jump from
Flat
���x� � �� to Flat

���x� � �� is allowed with the usual
compact and noncompact gauge actions, the topology
change may occur without a big penalty. It is the U�1�
version of the Lüscher’s bound

1� ReP���x�< � (22)

with � < 2, that can prevent these topology changes be-
cause the point Flat

���x� � 
� is not allowed under this
condition. Furthermore, it can be shown that Qgeo is
equivalent to the index of the overlap fermion with s � 0
if � < 1=5 is satisfied.

For the non-Abelian gauge theories in higher dimen-
sions, we do not have the exact geometrical definition of
the topological charge (note that (6) gives nonintegers). It
is, however, quite natural to assume that a similar mecha-
nism concerning the compactness of the link variables
allows us to preserve the index of the overlap-Dirac op-
erator for very small �. Also for larger �, we may expect
that the topology stabilizes well in practical sampling of
gauge configurations.

Table VI summarized our data for the stability of the
topological charge

Stab Q 

Ntrj

�plaq 	 #Q
; (23)

where �plaq is the autocorrelation time of the plaquette,
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FIG. 6 (color online). 1=g2
M in the Manton scheme for various

values of 1=�. The mean field improved expression (20) is used
with the measured plaquette expectation value. Different sym-
bols distinguish the value of 1=� (1 for circles, 2=3 for squares, 0
for triangles). Open symbols with dot-dashed line represent tree-
level results and open symbols with dashed lines are one-loop.
The best results including two-loop corrections are shown by
filled symbols with solid lines.
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measured using the method described in Appendix E of
[32]. Ntrj denotes the total length of the HMC trajectories
and #Q is the number of topology changes during the
trajectories. The topological charge Q is measured every
10–20 trajectories with the geometrical definition (6) after
our cooling method. With this definition, StabQ represents
a mean number of independent gauge configurations
sampled staying a certain topological charge. But it only
gives an upper limit, because the topology change is de-
tected only every 10–20 trajectories and we may miss the
change if Q changes its value and returns to the original
value between two consecutive measurements. Therefore,
our measurement of StabQ may give a good approximation
when the topology change is a rare event.

Results are plotted in Fig. 7 as a function of the lattice
spacing squared. We find a clear trend that the stability
increases for larger 1=� if the lattice spacing is the same.
When the lattice size is increased from L=a � 12 to 16, the
stability drops significantly for each value of 1=�. This is
expected, because the topology change occurs through
local dislocations of gauge field and its probability scales
as the volume. For even larger volume (L=a � 20), our
data are not precise enough, since the total length of
trajectory is shorter. We also observe that the stability
increases very rapidly toward the continuum limit.

For the study of the �-regime in a fixed topological
sector, the lattices �1=�; �; L� � �1; 1:42; 16� and (2=3,
2.7, 16) would be appropriate. Their physical size is L�

1:25 fm and the topological charge is stable for �100�
1000��plaq trajectories.

VI. CONSTRUCTION OF THE OVERLAP-DIRAC
OPERATOR

A. Low-lying mode distribution of HW

We measure the low-lying eigenvalues of aHW on the
gauge configurations generated with the topology conserv-
ing gauge action. We use the numerical package ARPACK
[33], which implements the implicitly restarted Arnoldi
method. For the Hermitian Wilson-Dirac operator aHW
we take the form aHW � �5�aDW � 1� s� with s � 0:6.
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FIG. 7 (color online). Stability of the topological charge.
Different symbols represent the lattice size: L=a � 12 (circles),
16 (squares), 20 (upward triangles). The value of 1=� is distin-
guished by the line type: 1=� � 0 (dotted), 2=3 (dashed), 1
(solid). Downward triangles are the data of [11] measured on
164 lattices.

TABLE VI. Stability of the topological charge StabQ. The
length of the HMC trajectory Ntrj, the autocorrelation time
measured for plaquette �plaq, and the number of topology change
#Q are also summarized.

Lattice size 1=� � r0=a Ntrj �plaq #Q StabQ

124 1 1.0 3.257(30) 180 00 2.91(33) 696 9
1.2 4.555(73) 18 000 1.59(15) 265 43
1.3 5.140(50) 18 000 1.091(70) 69 239

2=3 2.25 3.498(24) 18 000 5.35(79) 673 5
2.4 4.386(53) 18 000 2.62(23) 400 17
2.55 5.433(72) 18 000 2.86(33) 123 51

0 5.8 [3.668(12)] 18 205 30.2(6.6) 728 1
5.9 [4.483(17)] 27 116 13.2(1.5) 761 3
6.0 [5.368(22)] 27 188 15.7(3.0) 304 6

164 1 1.3 5.240(96) 11 600 3.2(6) 78 46
1.42 6.240(89) 5000 2.6(4) 2 961

2=3 2.55 5.290(69) 12 000 6.4(5) 107 18
2.7 6.559(76) 14 000 3.1(3) 6 752

0 6.0 [5.368(22)] 3500 11.7(3.9) 14 21
6.13 [6.642(� )] 5500 12.4(3.3) 22 20

204 1 1.3 � � � 1240 2.6(5) 14 34
1.42 � � � 7000 3.8(8) 29 64

2=3 2.55 � � � 1240 3.4(7) 15 24
2.7 � � � 7800 3.5(6) 20 111

0 6.0 � � � 1600 14.4(7.8) 37 3
6.13 � � � 1298 9.3(2.8) 4 35
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FIG. 8 (color online). Ten lowest eigenvalues of jaHW j �
j�5�aDW � 1:6�j for gauge configurations with r0=a ’ 5:3.
Data are shown for 1=� � 1 (pluses), 2=3 (stars), and 0
(squares). The lattice size is 204.
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Figure 8 shows a typical comparison of the eigenvalue
distribution for three values of 1=� on a 204 lattice. The �
value is chosen such that the Sommer scale r0=a is roughly
equal to 5.3, which corresponds to a ’ 0:1 fm. From the
plot we observe that the density of the low-lying modes is
relatively small for larger values of 1=�. To quantify this
statement we list the probability, P�<0:1�, to find the
eigenvalue smaller than 0.1 in Table VII. For the above
example, the probability is 41% for the standard Wilson
gauge action (1=� � 0), but it decreases to 15% (9%) for
1=� � 2=3�1�. For another lattice spacing (r0=a ’ 6:5) and
lattice size 164, a similar trend can be found. In Table VII
we also summarize the ensemble average of the lowest
eigenvalue 
min and the inverse of condition numbers

max=
min and 
max=
10, where 
10 and 
max denote the
10th and the highest eigenvalues, respectively. We may
conclude that the lowest eigenvalue is higher in average for
larger 1=�.

B. Numerical cost

In the numerical implementation of the overlap-Dirac
operator one often subtracts the low-lying eigenmodes of
aHW and treats them exactly. The rest of the modes are
approximated by some polynomial or rational functions.
The numerical cost to operate the overlap-Dirac operator is
dominated by the polynomial/rational part, because the
subtraction has to be done only once for a given configu-
ration. Here, we assume that 10 lowest eigenmodes are
subtracted and compare the relative numerical cost on the
gauge configurations with different values of 1=�.

The accuracy of the Chebyshev polynomial approxima-
tion sgnCheb�aHW� with a degree Npoly can be expressed as
[34]

hvj�1� sgn2
Cheb�aHW��

2jvi
hvjvi

� A exp��BNpoly=��; (24)

TABLE VII. The probability P�<0:1� to find the eigenvalue lower than 0.1 for the Hermitian Wilson-Dirac operator jaHW j �
j�5�aDW � 1:6�j. Ensemble averages of the lowest eigenvalue and the inverse of condition numbers are also listed. The Sommer scale
r0=a is the result for L � 16 lattices. The values with [] are from [26] with an interpolation in �.

Lattice size 1=� � r0=a P�<0:1� 
min 
min=
max 
10=
max

204 1 1.3 5.240(96) 0.090(14) 0.0882(84) 0.0148(14) 0.039 70(29)
2=3 2.55 5.290(69) 0.145(12) 0.0604(53) 0.0101(08) 0.036 51(27)
0 6.0 [5.368(22)] 0.414(29) 0.0315(57) 0.0059(34) 0.027 66(46)
1 1.42 6.240(89) 0.031(10) 0.168(13) 0.0282(21) 0.047 65(32)

2=3 2.7 6.559(76) 0.019(18) 0.151(11) 0.0251(19) 0.046 46(37)
0 6.13 [6.642(� )] 0.084(14) 0.0861(83) 0.0126(15) 0.037 75(50)

164 1 1.3 5.240(96) 0.053(13) 0.111(12) 0.0187(21) 0.044 55(31)
2=3 2.55 5.290(69) 0.067(13) 0.1038(98) 0.0174(16) 0.042 39(36)
0 6.0 [5.368(22)] 0.130(20) 0.0692(90) 0.0116(15) 0.034 51(62)
1 1.42 6.240(89) 0.007(5) 0.219(13) 0.0367(21) 0.052 33(26)

2=3 2.7 6.559(76) 0.020(8) 0.191(12) 0.0320(19) 0.051 17(29)
0 6.13 [6.642(� )] 0.030(10) 0.139(10) 0.0232(17) 0.043 84(38)
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FIG. 9 (color online). The accuracy (24) as a function of Npol=� for L � 16 (left) and L � 20 (right). We use 4 gauge configurations
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for a random noise vector jvi. A and B are constants. We
find that they are A� 0:3 and B� 4:2 almost independent
of the lattice parameters as shown in Fig. 9. The reduced
condition number � � 
max=
10 enters in the formula with
a combination Npoly=�. Therefore, the numerical cost,
which is proportional to Npoly, depends linearly on � if
one wants to keep the accuracy for the sign function. From
Table VII we observe that the reduced condition number is
about a factor 1.2–1.4 smaller for 1=� � 1 than that for the
standard Wilson gauge action.

We also check that the above observation does not
change by varying the value of s in a reasonable range.
Figure 10 shows a typical distribution of the low-lying
eigenmodes for s � 0:2-0:7. We find that the advantage
of the topology conserving gauge action does not change.
Also, from these plots we can see that s� 0:6 is nearly
optimal for all cases.

C. Locality

If the overlap-Dirac operator is local, the norm
kD�x; y�v�y�k with a point source vector v at x0 should
decay exponentially as a function of x� x0 [5]

kD�x; y�v�y�k � C exp��Djx� x0j� (25)

with constants C and D. This behavior is actually observed
in Fig. 11. The plots are shown for different values of 1=�
at the lattice scales r0=a ’ 5:3 (left) and 6.5 (right). We find
no remarkable difference on the locality for different gauge
actions.

Recently, it has been pointed out that the mobility edge
is the crucial quantity which governs the locality of the
overlap-Dirac operator [35–38]. It would be interesting to
see the dependence of the mobility edge on the parameters
in the topology conserving action, which is left for future
works.
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FIG. 11 (color online). �kD�x; y�v�y�k=kD�0; y�v�y�k�2 with x0 � 0 measured on 10 gauge configurations for different values of
1=�. The lattice scale is r0=a ’ 5:3 (left) and 6.5 (right).
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VII. CONCLUSIONS

We study the properties of the topology conserving
gauge action (4) in the quenched approximation. For small
� ( & 1=20), the parameter to control the admissibility of
the plaquette variable, it is theoretically known that the
topology change is strictly prohibited, but we investigate
the action with ��O�1� for the use of practical purposes.
With the (quenched) Hybrid Monte Carlo updation, we find
that the topology change is strongly suppressed for 1=� �
2=3 and 1, compared to the standard Wilson gauge action.
The topological charge becomes more stable for fine latti-
ces, and it is possible to preserve the topological charge for
O(1000) HMC trajectories at a ’ 0:08 fm and L ’ 1:3 fm.
In the same parameter region, the standard Wilson gauge
action changes the topological charge every O�10� trajec-
tories. The action is therefore proved to be useful to accu-
mulate gauge configurations in a fixed topological sector.

We measure the heavy quark potential with this gauge
action at 1=� � 2=3 and 1. The lattice spacing is deter-
mined from the Sommer scale r0. With these measure-
ments we also investigate the scaling violation for short
and intermediate distances. The probe in the short distance
is the violation of the rotational symmetry, and a ratio rc=r0

of two different scales can be used for the intermediate
distances. For both of these we find that the size of the
scaling violation is comparable to the standard Wilson
gauge action, which is consistent with the expectation
that the term with 1=� introduces a difference at most
O�a4�. The action (4) shows no disadvantage as far as the
scaling is concerned.

The perturbative expansion of the coupling and Wilson
loops is available in the literature for general one-plaquette
action. We write down the coefficients for our particular
action (4) and observe that the convergence is very good if
the mean field improvement is applied. The coupling con-
stant in a certain scheme at a given scale is consistent
among different values of 1=�.

As a result of the (approximate) topology conservation,
the low-lying eigenvalues of the Wilson-Dirac operator in
the negative mass regime is suppressed. This is an advan-
tage in the construction of the overlap-Dirac operator, since
the numerical cost to evaluate the sign function is propor-
tional to the inverse of the lowest eigenvalue for a given
gauge configuration. In this case, the gain is about a factor
2–3 at the same lattice spacing compared to the standard
Wilson gauge action. If the first several eigenmodes are
subtracted and treated exactly, the gain is marginal, 20%–
40%. Similar improvements have been observed with the
improved gauge actions, such as the Lüscher-Weisz,
Iwasaki, and DBW2.
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