191 research outputs found
Continuous positive airway pressure ameliorated severe pulmonary hypertension associated with obstructive sleep apnea.
A 52-year-old obese woman was admitted to our institution for evaluation of dyspnea and pulmonary hypertension (PH). Polysomnography revealed severe obstructive sleep apnea (OSA) with an apnea hypopnea index of 99.8. Treatment with nocturnal continuous positive airway pressure (CPAP) resulted in correction of daytime hypoxemia, hypercapnia, and near-normalization of pulmonary artery pressure. To our knowledge, this is the most severe case of OSA-associated PH (approximately70 mmHg) reported to date, and it was successfully treated with nocturnal CPAP. This case demonstrates that OSA should be considered and polysomnography performed in all patients with PH, irrespective of severity, and that nocturnal CPAP has therapeutic effects on both OSA and daytime PH.</p
Epoprostenol Therapy for Pulmonary Arterial Hypertension
Pulmonary arterial hypertension (PAH) is characterized by elevation of pulmonary artery pressure caused by pulmonary vasoconstriction and vascular remodeling, which leads to right heart failure and death. Epoprostenol (prostaglandin I2) has a potent short-acting vasodilator property, and intravenous continuous epoprostenol is therefore used for treatment of PAH. Here we review evidence for the usefulness of intravenous continuous epoprostenol therapy in patients with PAH. Epoprostenol therapy is effective in idiopathic PAH patients and in patients with PAH associated with connective tissue disease, portal hypertension or congenital heart diseases, but it is not effective in patients with pulmonary veno-occlusive disease or pulmonary capillary hemangiomatosis. High-dose epoprostenol therapy markedly improved hemodynamics in some patients with PAH, possibly due to reverse remodeling of pulmonary arteries. This therapy has several side effects and complications such as headache, hypotension and catheter-related infections. Intravenous continuous epoprostenol is an effective treatment, but there are still some problems to be resolved
Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome.
Somatic mutations in the spliceosome gene ZRSR2-located on the X chromosome-are associated with myelodysplastic syndrome (MDS). ZRSR2 is involved in the recognition of 3'-splice site during the early stages of spliceosome assembly; however, its precise role in RNA splicing has remained unclear. Here we characterize ZRSR2 as an essential component of the minor spliceosome (U12 dependent) assembly. shRNA-mediated knockdown of ZRSR2 leads to impaired splicing of the U12-type introns and RNA-sequencing of MDS bone marrow reveals that loss of ZRSR2 activity causes increased mis-splicing. These splicing defects involve retention of the U12-type introns, while splicing of the U2-type introns remain mostly unaffected. ZRSR2-deficient cells also exhibit reduced proliferation potential and distinct alterations in myeloid and erythroid differentiation in vitro. These data identify a specific role for ZRSR2 in RNA splicing and highlight dysregulated splicing of U12-type introns as a characteristic feature of ZRSR2 mutations in MDS
Genetic and epigenetic loss of miR-31 activates NIK-dependent NF-κB pathway in Adult T-cell Leukemia
Conserved fungal effector suppresses PAMP-triggered immunity by targeting plant immune kinases
Plant pathogens have optimized their own effector sets to adapt to their hosts. However, certain effectors, regarded as core effectors, are conserved among various pathogens, and may therefore play an important and common role in pathogen virulence. We report here that the widely distributed fungal effector NIS1 targets host immune components that transmit signaling from pattern recognition receptors (PRRs) in plants. NIS1 from two Colletotrichum spp. suppressed the hypersensitive response and oxidative burst, both of which are induced by pathogen-derived molecules, in Nicotiana benthamiana. Magnaporthe oryzae NIS1 also suppressed the two defense responses, although this pathogen likely acquired the NIS1 gene via horizontal transfer from Basidiomycota. Interestingly, the root endophyte Colletotrichum tofieldiae also possesses a NIS1 homolog that can suppress the oxidative burst in N. benthamiana. We show that NIS1 of multiple pathogens commonly interacts with the PRR-associated kinases BAK1 and BIK1, thereby inhibiting their kinase activities and the BIK1-NADPH oxidase interaction. Furthermore, mutations in the NIS1-targeting proteins, i.e., BAK1 and BIK1, in Arabidopsis thaliana also resulted in reduced immunity to Colletotrichum fungi. Finally, M. oryzae lacking NIS1 displayed significantly reduced virulence on rice and barley, its hosts. Our study therefore reveals that a broad range of filamentous fungi maintain and utilize the core effector NIS1 to establish infection in their host plants and perhaps also beneficial interactions, by targeting conserved and central PRR-associated kinases that are also known to be targeted by bacterial effectors
- …