22 research outputs found
Conflict Behavior in Show Jumping Horses: A Field Study
peer-reviewedThe study objective was to determine if there was a relationship between behavioral and physiological stress measures in sport horses and their performance. Nineteen horses competed in show jumping events (6 housed at the center and 13 transported), while 5 horses at home training served as controls. The competition horses were assigned to âlightâ (obstacles â€100 cm) and âdifficultâ class (obstacles >100 cm). The conflict behaviors (CBs/min) in two rounds were calculated. Total faults were classified as âless faultsâ (â€one fault) or âmore faultsâ (>one fault). Salivary cortisol concentration (SCC) before the first round (SCC-SP1), 20 minutes (SCC-SP2), and 60 minutes after the second round (SCC-SP3) was measured. The increase (SCC-in) and decrease (SCC-dec) in SCC were calculated. No effect of competition was found. Horses that waited longer for the second round had greater CB (P < .05). Conflict behavior was more frequent in horses from the âmore faultsâ (P = .05) and âdifficultâ (a tendency; P = .06) classes. No correlation of CB with SCC was found. SCC-SP2 was greater in âmore faultsâ (P < .01) and âtransportedâ (P < .01) horses. Competition increased the SCC (P < .05), whereas SCC-SP2 was greater in less successful horses (P < .05). Transported horses and horses with more faults had the greatest SCC-SP2 and SCC-dec (P < .05). Our results suggest that horses which presented stress response were also less successful in competition. The adoption of effective methods to reduce transport and competition stress could enhance welfare and performance of sport horses during competition
Quality control assessment of the RNA-Seq data generated from liver and pituitary transcriptome of Hereford bulls using StrandNGS software
Background: Quality control (QC) assessment is the most critical step in the high-throughput RNA-seq data analysis to characterize the in-depth understanding of genome and transcriptome assembling to a given reference genome. It provides not only a quick insight into the RNA-seq data quality to allow early identification of good or bad RNA-seq data samples, but also to verify the alignment QC checks for further essential high-throughput bioinformatics analysis such as, identification of novel genetic variants, differentially expressed genes (DEGs), gene network and metabolic pathways.Method: After isolation of total RNA from liver (n=15) and pituitary gland (n=15) tissues of young Hereford bulls, the pooled total RNA (n=30) were fragmented using GeneRead rRNA depletion kit (Qiagen, Hilden, Germany) and cDNA library preparation were preformed using ScriptSeqTM v2 RNA-Seq library preparation kit (Epicentre, illumina, USA), followed by high-throughput sequencing of combined liver and pituitary transcriptome using MiSeq reagent kit v2 (illumina, USA) to obtain high quality of paired-end RNA-seq reads of 251 base-pairs (bps). In this paper, the QC assessment of obtained RNA-seq raw data as well as post-alignment QC of processed RNA-seq data of combined liver and pituitary transcriptome (n=30) of Hereford bulls were performed using the strand NGS software v1.3 (Agilent; http://www.strand-ngs.com/) data analysis package. The reads were aligned with Bowtie using default settings against both Bull and Cow genome assembly.Results: Using two runs of MiSeq platform, a total of over 60 million paired-end RNA-seq reads were successfully obtained and submitted to NCBI SRA resources (https://www.ncbi.nlm.nih.gov/sra?linkname=bioproject_sra_all&from_uid=312148). Library complexity plot results revealed 72.02% of duplicate reads with a low library complexity value of 0.28. The pre-alignment QC analysis of raw RNA-seq data revealed the sequence read lengths ranged from 35-251 bp size with more than 50% of all reads with length over 200bp and 10% of reads below 100bp.Conclusion: By testing the RNA-seq methodology on Illumina platform, two MiSeq sequencing runs yielded significantly high quality of 30 million sequencing reads per single MiSeq run. Our initial pre-alignment and post-alignment analysis of RNA-seq data analysis revealed that mapping of the Hereford liver and pituitary gland transcriptome to reference Bos taurus genome was successfully performed, however, more than 50% of all reads with length over 200bp were recovered. Therefore, obtained results concludes that liver and pituitary transcriptome sequencing with rRNA depletion method is less effective than mRNA RNA-seq method
RNA-seq based SNP discovery in gluteus medius muscle of Polish Landrace pigs
BackgroundSingle nucleotide polymorphisms (SNPs) are the well-known molecular markers in genetics and breeding studies applied to veterinary sciences and livestock production. Advancement of next generation sequencing (NGS) provides a high-throughput means of potential putative SNP discovery. The aim of the study was to identify the putative genetic variants in gluteus medius muscle transcriptome of Polish Landrace pigs.MethodsRNA-seq based NGS experiment was performed on Polish Landrace pigs fed with omega-6 and omega-3 polyunsaturated fatty acids (PUFAs) and normal diets. Isolation of total RNA from gluteus medius muscle was performed on low PUFAs (n=6) and High PUFAs dietary group of Polish Landrace pigs. The RNA-seq libraries were constructed by mRNA enrichment, mRNA fragmentation, second strand cDNA synthesis, adaptor ligation, size selection and PCR amplification using the illumina TruSeq RNA Sample Prep Kit v2 (Illumina, San Diego CA, USA), followed by NGS sequencing on MiSeq illumina platform. The quality control of raw RNA-seq data was performed using the Trimmomatic and FastQC tools. High QC paired-end RNA-seq data of gluteus medius muscle transcriptome were mapped to the reference genome Sus scrofa v.10.2. Finally, the SNPs discovery was performed using GATK and SAMtools bioinformatics SNPs caller tools.ResultsThe Fastq RNA-seq data generated from two pooled paired-end libraries (151bp) of gluteus medius muscle tissue of Polish Landrace pigs were submitted to NCBI SRA database (https://www.ncbi.nlm.nih.gov/sra). Study identified a total of 50.5 million paired-end reads (32.5 million low PUFAs dietary group and 18 million reads high PUFAs dietary group) of gluteus medius muscle transcriptome of Polish Landrace pigs. SNP discovery identified a total of 35436 homozygous and 28644 heterozygous cSNPs in gluteus medius muscle transcriptomes representing both dietary groups of Polish Landrace pig. Moreover, a total of 25187 and 5488 cSNP were identified as synonymous SNPs, and 18005 and 4780 cSNP were identified as nonsynonymous SNPs. Finally, single nucleotide variation (SNV) representing substitutions of all four possibilities (A,T,G,C) were identified ranging 2935 to 3227 SNVs (high PUFAs) and 3528 to 3882 SNVs (low PUFAs) for the heterozygous cSNPs and 2712 to 4058 (high PUFAs) and 4169 to 5692 SNVs (low PUFAs) for the heterozygous SNPs in gluteus medius muscle transcriptomes of Polish Landrace pigs.ConclusionsStudy concluded that identification of cSNPs dataset representing the gluteus medius muscle transcriptome of Polish Landrace pigs fed with a control diet (low) and pigs fed with a PUFAs diet (high) may be helpful to develop a new set of genetic markers specific to Polish Landrace pig breed. Such cSNP markers eventually can be utilized in genome-wide association studies (GWAS) and to finally implement on marker assisted selection (MAS) and genomics selection (GS) program in active breeding population of Polish Landrace pigs in Poland
RNA-seq based SNP discovery in liver transcriptome of Polish Landrace pigs
Background:Â RNA-seq technology is most commonly used in quantitative measurement of gene expression levels and identification of non-annotated transcripts. It is also used for the coding SNPs (cSNPs) discoveries in an efficient and cost-effective way. The aim of this study was to identify the putative genetic cSNPs variants in liver transcriptome of Polish Landrace pigs fed with high and low (normal) omega-6 and omega-3 polyunsaturated fatty acids (PUFAs) diets.Methods:Â RNA-seq based NGS experiment was performed on Polish Landrace pigs fed with high and low PUFAs diets. Total RNA were isolated from liver tissues of low PUFAs (n=6) and high PUFAs dietary group (n=6) of Polish Landrace pigs. The RNA-seq libraries preparations were performed by mRNA enrichment, mRNA fragmentation, second strand cDNA synthesis, adaptor ligation, size selection and PCR amplification using the illumina TruSeq RNA Sample Prep Kit v2 (Illumina, San Diego CA, USA), followed by NGS sequencing on MiSeq illumina platform. The quality control (QC) of raw RNA-seq data of liver transcriptome was performed using the Trimmomatic and FastQC tools. The paired-end mapping of the liver transcriptome RNA-seq data (n=12) was performed on the reference genome Sus scrofa v.10.2, followed by cSNPs discovery using GATK and SAMtools bioinformatics SNPs caller tools.Results:Â Two pooled paired-end libraries of 151bp liver transcriptome of Polish Landrace pigs were generated from MiSeq instrument and subsequent Fastq RNA-seq data were submitted to NCBI SRA database (https://www.ncbi.nlm.nih.gov/sra). Our study identified 25.3 million paired-end reads: representing 13,509,248 paired-end reads of high PUFAs dietary group and 11,815,696 paired-end reads of low PUFAs dietary group of Polish Landrace pigs liver transcriptome. The SNP discovery results revealed identification of 25909 homozygous and 23290 heterozygous cSNPs in the liver transcriptome of both dietary groups of Polish Landrace pigs. With regards to same or alternative SNPs alleles encoding amino acids regions, a total of 27141 synonymous cSNP and 5989 non-synonymous cSNPs were identified in liver transcriptome representing high PUFAs dietary group. However, a total of 15128 synonymous cSNPs and 3900 non-synonymous cSNPs were identified in liver transcriptome representing low PUFAs dietary groups of Polish Landrace pigs. The identification of single nucleotide variations (SNVs) representing substitutions of all four possibilities (A,T,G,C) were ranged 2872 to 6868 SNVs (high PUFAs) and 2574 to 3654 SNVs (low PUFAs) in the homozygous cSNPs and 2452 to 2678 SNVs (high PUFAs) and 2094 to 2230 SNVs (low PUFAs) in the heterozygous cSNPs of liver transcriptomes of Polish Landrace pigs, respectively.Conclusions:Â Study concluded that identification of cSNPs dataset representing the liver transcriptome of Polish Landrace pigs fed with a control diet (low) and pigs fed with a PUFAs diet (high) may be helpful to develop a new set of genetic markers for trait-associated studies (viz., growth and metabolic traits) specific to Polish Landrace pig breed. Such cSNP markers eventually can be utilized in the genetic improvement of the pig production traits using the genome-wide association studies (GWAS) and to finally implement on marker assisted selection (MAS) and genomics selection (GS) program in active breeding population of Polish Landrace pigs in Poland
Omega-3 Alpha-Linolenic Fatty Acid Affects the Level of Telomere Binding Protein TRF1 in Porcine Skeletal Muscle
Omega-3 fatty acids are health-promoting nutrients that contribute to the amelioration of age-related diseases. Recent studies have reported the role of these fatty acids in the aging process, explicitly impacting telomere biology. The shelterin protein complex, located at the extremities of chromosomes, ensures telomere protection and length regulation. Here, we analyzed the impact of dietary omega-3 alpha-linolenic fatty acid from linseed oil on skeletal muscle telomere biology using an animal model of female pigs. Fifteen animals were supplemented with linseed oil for nine weeks and an equal number of individuals were fed with a control diet. Linseed-oil-supplemented animals showed an increased level of alpha-linolenic acid in skeletal muscles compared to control animals. There was no difference between groups in the telomere length measured in leukocytes and muscles. However, muscles of the linseed-oil-supplemented pigs showed lower levels of the shelterin TRF1 protein compared to the control group. Our results suggest that omega-3 linolenic acid counteracts the elevation of TRF1 levels, which increase with age and due to the presence of reactive oxygen species in muscle. The observed effect may be due to attenuation of oxidative stress
Primary anaplastic large T-cell lymphoma â a case report
Cutaneous lymphomas are very insidious neoplasms whose primary symptoms are easily neglected. They are defined as
primary cutaneous lymphomas when the lymphomatous proliferation is limited to the skin and no lymph node, bone marrow
or internal organ involvement is observed at diagnosis. Patients with cutaneous lymphomas are for many years treated
by dermatologists, who suspect allergy or advanced psoriasis in their patients. Other symptoms, such as asthenia, reduced
body weight, night sweats, dyspnoea, cough, persistent pruritus or enlarged lymph nodes, are initially considered to be a sign
of infection. In a vast majority of cases, lymphoma is diagnosed based on histopathological evaluation of skin specimens,
followed by lymph node assessment. The paper presents a case of a patient referred to the Surgical Oncology Outpatient
Clinic in the Pope John Paul II Provincial Hospital in BeĆchatĂłw (Poland)
Effect of Omega-3 Fatty Acids on Telomeres—Are They the Elixir of Youth?
Telomeres are complexes consisting of tandem repeat DNA combined with associated proteins that play a key role in protecting the ends of chromosomes and maintaining genome stability. They are considered a biological clock, as they shorten in parallel with aging. Furthermore, short telomeres are associated with several age-related diseases. However, the variability in telomere shortening independent of chronological age suggests that it is a modifiable factor. In fact, it is regulated inter alia by genetic damage, cell division, aging, oxidative stress, and inflammation. A key question remains: how can we prevent accelerated telomere attrition and subsequent premature replicative senescence? A number of studies have explored the possible impact of omega-3 fatty acids on telomere shortening. This review summarizes published cross-sectional studies, randomized controlled trials, and rodent studies investigating the role of omega-3 fatty acids in telomere biology. It also covers a broad overview of the mechanism, currently favored in the field, that explains the impact of omega-3 fatty acids on telomeres—the food compound’s ability to modulate oxidative stress and inflammation. Although the results of the studies performed to date are not consistent, the vast majority indicate a beneficial effect of omega-3 fatty acids on telomere length
Omega-3 alpha-linolenic fatty acid affects the level of telomere binding protein trf1 in porcine skeletal muscle
Omega-3 fatty acids are health-promoting nutrients that contribute to the amelioration of age-related diseases. Recent studies have reported the role of these fatty acids in the aging process, explicitly impacting telomere biology. The shelterin protein complex, located at the extremities of chromosomes, ensures telomere protection and length regulation. Here, we analyzed the impact of dietary omega-3 alpha-linolenic fatty acid from linseed oil on skeletal muscle telomere biology using an animal model of female pigs. Fifteen animals were supplemented with linseed oil for nine weeks and an equal number of individuals were fed with a control diet. Linseed-oil-supplemented animals showed an increased level of alpha-linolenic acid in skeletal muscles compared to control animals. There was no difference between groups in the telomere length measured in leukocytes and muscles. However, muscles of the linseed-oil-supplemented pigs showed lower levels of the shelterin TRF1 protein compared to the control group. Our results suggest that omega-3 linolenic acid counteracts the elevation of TRF1 levels, which increase with age and due to the presence of reactive oxygen species in muscle. The observed effect may be due to attenuation of oxidative stress.</p
Conflict Behavior in Show Jumping Horses: A Field Study
The study objective was to determine if there was a relationship between behavioral and physiological stress measures in sport horses and their performance. Nineteen horses competed in show jumping events (6 housed at the center and 13 transported), while 5 horses at home training served as controls. The competition horses were assigned to âlightâ (obstacles â€100 cm) and âdifficultâ class (obstacles >100 cm). The conflict behaviors (CBs/min) in two rounds were calculated. Total faults were classified as âless faultsâ (â€one fault) or âmore faultsâ (>one fault). Salivary cortisol concentration (SCC) before the first round (SCC-SP1), 20 minutes (SCC-SP2), and 60 minutes after the second round (SCC-SP3) was measured. The increase (SCC-in) and decrease (SCC-dec) in SCC were calculated. No effect of competition was found. Horses that waited longer for the second round had greater CB (P < .05). Conflict behavior was more frequent in horses from the âmore faultsâ (P = .05) and âdifficultâ (a tendency; P = .06) classes. No correlation of CB with SCC was found. SCC-SP2 was greater in âmore faultsâ (P < .01) and âtransportedâ (P < .01) horses. Competition increased the SCC (P < .05), whereas SCC-SP2 was greater in less successful horses (P < .05). Transported horses and horses with more faults had the greatest SCC-SP2 and SCC-dec (P < .05). Our results suggest that horses which presented stress response were also less successful in competition. The adoption of effective methods to reduce transport and competition stress could enhance welfare and performance of sport horses during competition