1,740 research outputs found
A morphological algorithm for improving radio-frequency interference detection
A technique is described that is used to improve the detection of
radio-frequency interference in astronomical radio observatories. It is applied
on a two-dimensional interference mask after regular detection in the
time-frequency domain with existing techniques. The scale-invariant rank (SIR)
operator is defined, which is a one-dimensional mathematical morphology
technique that can be used to find adjacent intervals in the time or frequency
domain that are likely to be affected by RFI. The technique might also be
applicable in other areas in which morphological scale-invariant behaviour is
desired, such as source detection. A new algorithm is described, that is shown
to perform quite well, has linear time complexity and is fast enough to be
applied in modern high resolution observatories. It is used in the default
pipeline of the LOFAR observatory.Comment: Accepted for publication in A&
Post-correlation radio frequency interference classification methods
We describe and compare several post-correlation radio frequency interference
classification methods. As data sizes of observations grow with new and
improved telescopes, the need for completely automated, robust methods for
radio frequency interference mitigation is pressing. We investigated several
classification methods and find that, for the data sets we used, the most
accurate among them is the SumThreshold method. This is a new method formed
from a combination of existing techniques, including a new way of thresholding.
This iterative method estimates the astronomical signal by carrying out a
surface fit in the time-frequency plane. With a theoretical accuracy of 95%
recognition and an approximately 0.1% false probability rate in simple
simulated cases, the method is in practice as good as the human eye in finding
RFI. In addition it is fast, robust, does not need a data model before it can
be executed and works in almost all configurations with its default parameters.
The method has been compared using simulated data with several other mitigation
techniques, including one based upon the singular value decomposition of the
time-frequency matrix, and has shown better results than the rest.Comment: 14 pages, 12 figures (11 in colour). The software that was used in
the article can be downloaded from http://www.astro.rug.nl/rfi-software
Wide-field LOFAR-LBA power-spectra analyses: Impact of calibration, polarization leakage and ionosphere
Contamination due to foregrounds (Galactic and Extra-galactic), calibration
errors and ionospheric effects pose major challenges in detection of the cosmic
21 cm signal in various Epoch of Reionization (EoR) experiments. We present the
results of a pilot study of a field centered on 3C196 using LOFAR Low Band
(56-70 MHz) observations, where we quantify various wide field and calibration
effects such as gain errors, polarized foregrounds, and ionospheric effects. We
observe a `pitchfork' structure in the 2D power spectrum of the polarized
intensity in delay-baseline space, which leaks into the modes beyond the
instrumental horizon (EoR/CD window). We show that this structure largely
arises due to strong instrumental polarization leakage () towards
{Cas\,A} ( kJy at 81 MHz, brightest source in northern sky), which is
far away from primary field of view. We measure an extremely small ionospheric
diffractive scale ( m at 60 MHz) towards {Cas\,A}
resembling pure Kolmogorov turbulence compared to
km towards zenith at 150 MHz for typical ionospheric conditions. This is one of
the smallest diffractive scales ever measured at these frequencies. Our work
provides insights in understanding the nature of aforementioned effects and
mitigating them in future Cosmic Dawn observations (e.g. with SKA-low and HERA)
in the same frequency window.Comment: 20 pages, 11 figures, accepted for publication in MNRA
Measurement of the anisotropy power spectrum of the radio synchrotron background
We present the first targeted measurement of the power spectrum of
anisotropies of the radio synchrotron background, at 140 MHz where it is the
overwhelmingly dominant photon background. This measurement is important for
understanding the background level of radio sky brightness, which is dominated
by steep-spectrum synchrotron radiation at frequencies below 0.5 GHz and has
been measured to be significantly higher than that which can be produced by
known classes of extragalactic sources and most models of Galactic halo
emission. We determine the anisotropy power spectrum on scales ranging from 2
degrees to 0.2 arcminutes with LOFAR observations of two 18 square degree
fields -- one centered on the Northern hemisphere coldest patch of radio sky
where the Galactic contribution is smallest and one offset from that location
by 15 degrees. We find that the anisotropy power is higher than that
attributable to the distribution of point sources above 100 micro-Jy in flux.
This level of radio anisotropy power indicates that if it results from point
sources, those sources are likely at low fluxes and incredibly numerous, and
likely clustered in a specific manner.Comment: 8 pages, 5 figures, published in MNRAS, updated to published versio
- …