993 research outputs found

    The Groverian Measure of Entanglement for Mixed States

    Full text link
    The Groverian entanglement measure introduced earlier for pure quantum states [O. Biham, M.A. Nielsen and T. Osborne, Phys. Rev. A 65, 062312 (2002)] is generalized to the case of mixed states, in a way that maintains its operational interpretation. The Groverian measure of a mixed state of n qubits is obtained by a purification procedure into a pure state of 2n qubits, followed by an optimization process based on Uhlmann's theorem, before the resulting state is fed into Grover's search algorithm. The Groverian measure, expressed in terms of the maximal success probability of the algorithm, provides an operational measure of entanglement of both pure and mixed quantum states of multiple qubits. These results may provide further insight into the role of entanglement in making quantum algorithms powerful.Comment: 6 pages, 2 figure

    Nutation versus angular dependent NQR spectroscopy and the impact of underdoping on charge inhomogeneities in YBa2_2Cu3_3Oy_y

    Full text link
    We describe two different nuclear quadrupole resonance (NQR) based techniques, designed to measure the local asymmetry of the internal electric field gradient, and the tilt angle of the main NQR principal axis z from the crystallographic axis c. These techniques use the dependence of the NQR signal on the duration of the radio frequency (rf) pulse and on the direction of the rf field H1 with respect to the crystal axis. The techniques are applied to oriented powder of YBa2_{2}Cu%_{3}Oy_{y} fully enriched with 63Cu. Measurements were performed at different frequencies, corresponding to different in-plane copper sites with respect to the dopant. Combining the results from both techniques, we conclude that oxygen deficiency in the chain layer lead to a rotation of the NQR main principal axis at the nearby Cu on the CuO2 planes by 20+-degrees. This occurs with no change to the asymmetry. The axis rotation associated with oxygen deficiency means that there must be electric field inhomogeneities in the CuO2 planes only in the vicinity of the missing oxygen.Comment: 9 pages, 10 figure

    Anomalous proximity effect in gold coated (110) YBa2Cu3O7δYBa_2Cu_3O_{7-\delta} films: Penetration of the Andreev bound states

    Full text link
    Scanning tunneling spectroscopy of (110) YBa2Cu3O7δ/AuYBa_2Cu_3O_{7-\delta}/Au bi-layers reveal a proximity effect markedly different from the conventional one. While proximity-induced mini-gaps rarely appear in the Au layer, the Andreev bound states clearly penetrate into the metal. Zero bias conductance peaks are measured on Au layers thinner than 7 nm with magnitude similar to those detected on the bare superconductor films. The peaks then decay abruptly with Au thickness and disappear above 10 nm. This length is shorter than the normal coherence length and corresponds to the (ballistic) mean free path.Comment: 5 prl format pages, 4 figures, to be published in PR

    Algebraic analysis of quantum search with pure and mixed states

    Full text link
    An algebraic analysis of Grover's quantum search algorithm is presented for the case in which the initial state is an arbitrary pure quantum state of n qubits. This approach reveals the geometrical structure of the quantum search process, which turns out to be confined to a four-dimensional subspace of the Hilbert space. This work unifies and generalizes earlier results on the time evolution of the amplitudes during the quantum search, the optimal number of iterations and the success probability. Furthermore, it enables a direct generalization to the case in which the initial state is a mixed state, providing an exact formula for the success probability.Comment: 13 page

    A quest for frustration driven distortion in Y2Mo2O7

    Full text link
    We investigated the nature of the freezing in the geometrically frustrated Heisenberg spin-glass Y2Mo2O7 by measuring the temperature dependence of the static internal magnetic field distribution above the spin-glass temperature, Tg, using the muSR technique. The evolution of the field distribution cannot be explained by changes in the spin susceptibility alone and suggests a lattice deformation. This possibility is addressed by numerical simulations of the Heisenberg Hamiltonian with magneto-elastic coupling at T>0.Comment: 5 pages 4 figures. Accepted for publication in PR

    Characterization of pure quantum states of multiple qubits using the Groverian entanglement measure

    Full text link
    The Groverian entanglement measure, G(psi), is applied to characterize a variety of pure quantum states |psi> of multiple qubits. The Groverian measure is calculated analytically for certain states of high symmetry, while for arbitrary states it is evaluated using a numerical procedure. In particular, it is calculated for the class of Greenberger-Horne-Zeilinger states, the W states as well as for random pure states of n qubits. The entanglement generated by Grover's algorithm is evaluated by calculating G(psi) for the intermediate states that are obtained after t Grover iterations, for various initial states and for different sets of the marked states.Comment: 28 pages, 5 figure

    Evaluation of the Multiplane Method for Efficient Simulations of Reaction Networks

    Full text link
    Reaction networks in the bulk and on surfaces are widespread in physical, chemical and biological systems. In macroscopic systems, which include large populations of reactive species, stochastic fluctuations are negligible and the reaction rates can be evaluated using rate equations. However, many physical systems are partitioned into microscopic domains, where the number of molecules in each domain is small and fluctuations are strong. Under these conditions, the simulation of reaction networks requires stochastic methods such as direct integration of the master equation. However, direct integration of the master equation is infeasible for complex networks, because the number of equations proliferates as the number of reactive species increases. Recently, the multiplane method, which provides a dramatic reduction in the number of equations, was introduced [A. Lipshtat and O. Biham, Phys. Rev. Lett. 93, 170601 (2004)]. The reduction is achieved by breaking the network into a set of maximal fully connected sub-networks (maximal cliques). Lower-dimensional master equations are constructed for the marginal probability distributions associated with the cliques, with suitable couplings between them. In this paper we test the multiplane method and examine its applicability. We show that the method is accurate in the limit of small domains, where fluctuations are strong. It thus provides an efficient framework for the stochastic simulation of complex reaction networks with strong fluctuations, for which rate equations fail and direct integration of the master equation is infeasible. The method also applies in the case of large domains, where it converges to the rate equation results

    Modulation of Leukocyte Behavior by an Inflamed Extracellular Matrix

    Get PDF
    Inflammation is a response of the immune system to foreign insult or physical damage. Various cellular and humoral components of the immune system are recruited from the vascular system and are translocated through endothelium, and into extracellular matrix (ECM) compartments of inflamed tissues. This translocation is orchestrated by various types of accessory signals, in the form of soluble or complexed molecules, which evoke remarkable transitions in leukocyte activities. Recruited inflammatory cells give rise to mechanisms of migration, including the secretion of enzymes and other pro-inflammatory mediators and the alteration of their adhesive contacts with the ECM. Hence, migrating cells secrete enzymes, chemokines, and cytokines which interact with the ECM, and thereby, provide the cells with intrinsic signals for coordinating their responses. Resultant products of enzymatic modifications to the ECM microenvironment, such as cytokine- and ECM-derived molecules, may be also part of a cell-signaling mechanism that provides leukocytes with information about the nature of their inflammatory activity; such a mechanism may give the immune system data that can be cognitively interpreted for consequential activities. This article reviews the findings that support this notion and describe the dynamic interactions between participants of the inflammatory processes

    The Herbertsmithite Hamiltonian: μ\muSR measurements on single crystals

    Get PDF
    We present transverse field muon spin rotation/relaxation measurements on single crystals of the spin-1/2 kagome antiferromagnet Herbertsmithite. We find that the spins are more easily polarized when the field is perpendicular to the kagome plane. We demonstrate that the difference in magnetization between the different directions cannot be accounted for by Dzyaloshinksii-Moriya type interactions alone, and that anisotropic axial interaction is present.Comment: 8 pages, 3 figures, accepted to JPCM special issue on geometrically frustrated magnetis
    corecore