478 research outputs found
Strong electron-phonon coupling in delta-phase stabilized Pu
Heat capacity measurements of the delta-phase stabilized alloy Pu-Al suggest
that strong electron-phonon coupling is required to explain the moderate
renormalization of the electronic density of states near the Fermi energy. We
calculate the heat capacity contributions from the lattice and electronic
degrees of freedom as well as from the electron-lattice coupling term and find
good overall agreement between experiment and theory assuming a dimensionless
electron-phonon coupling parameter of order unity, lambda ~ 0.8. This large
electron-phonon coupling parameter is comparable to reported values in other
superconducting metals with face-centered cubic crystal structure, for example,
Pd (lambda ~ 0.7) and Pb (lambda ~ 1.5). Further, our analysis shows evidence
of a sizable residual low-temperature entropy contribution, S_{res} ~ 0.4 k_B
(per atom). We can fit the residual specific heat to a two-level system.
Therefore, we speculate that the observed residual entropy originates from
crystal-electric field effects of the Pu atoms or from self-irradiation induced
defects frozen in at low temperatures.Comment: 9 pages, 11 figures, to appear in Phys. Rev.
Nutrient Source and Tillage Effects on Maize: II. Yield, Soil Carbon, and Carbon Dioxide Emissions
There is a need to understand the potential benefits of using the biotechnology waste byâproduct from manufacturing as a fertilizer replacement in agriculture, by quantifying the economic value for the farmer and measuring the environmental impact. Measuring CO2 emissions can be used to assess environmental impact, including three widely used micrometeorological methodologies: (i) the Bowen Ratio Energy Balance (BREB), (ii) aerodynamic fluxâgradient theory, and (iii) eddy covariance (EC). As a first step in quantifying benefits of applying biotechnology waste in agriculture, a detailed examination of these three methods was conducted to understand their effectiveness in quantifying CO2 emissions for this specific circumstance. The study measured micrometeorological properties over a field planted to maize (Zea mays L. var. indentata ), one plot treated with biotechnology waste applied as a nutrient amendment, and one plot treated with a typical farmer fertilizer practice. Carbon dioxide flux measurements took place over 1 yr, using both BREB and EC systems. The aerodynamic method was used to gapâfill BREB system measurements, and those flux estimates were compared with estimates produced separately by the aerodynamic and EC methods. All methods found greater emissions over the biotechnology waste application. The aerodynamic method CO2 flux estimates were considerably greater than both the EC and a combined BREBâaerodynamic approach. During the day, the EC and BREB methods agree. At night, the aerodynamic approach detects and accounts for buildup of CO2 at the surface during stable periods. The BREB systems combined with aerodynamic approaches provide alternate methods to EC in examining micrometeorological properties near the surface
Nutrient Source and Tillage Effects on Maize: I. Micrometeorological Methods for Measuring Carbon Dioxide Emissions
There is a need to understand the potential benefits of using the biotechnology waste byâproduct from manufacturing as a fertilizer replacement in agriculture, by quantifying the economic value for the farmer and measuring the environmental impact. Measuring CO2 emissions can be used to assess environmental impact, including three widely used micrometeorological methodologies: (i) the Bowen Ratio Energy Balance (BREB), (ii) aerodynamic fluxâgradient theory, and (iii) eddy covariance (EC). As a first step in quantifying benefits of applying biotechnology waste in agriculture, a detailed examination of these three methods was conducted to understand their effectiveness in quantifying CO2 emissions for this specific circumstance. The study measured micrometeorological properties over a field planted to maize (Zea mays L. var. indentata ), one plot treated with biotechnology waste applied as a nutrient amendment, and one plot treated with a typical farmer fertilizer practice. Carbon dioxide flux measurements took place over 1 yr, using both BREB and EC systems. The aerodynamic method was used to gapâfill BREB system measurements, and those flux estimates were compared with estimates produced separately by the aerodynamic and EC methods. All methods found greater emissions over the biotechnology waste application. The aerodynamic method CO2 flux estimates were considerably greater than both the EC and a combined BREBâaerodynamic approach. During the day, the EC and BREB methods agree. At night, the aerodynamic approach detects and accounts for buildup of CO2 at the surface during stable periods. The BREB systems combined with aerodynamic approaches provide alternate methods to EC in examining micrometeorological properties near the surface
Conservation agriculture as a climate change mitigation strategy in Zimbabwe
There is a need to quantify agricultureâs potential to sequester carbon (C) to inform global approaches aimed at mitigating climate change effects. Many factors including climate, crop, soil management practices, and soil type can influence the contribution of agriculture to the global carbon cycle. The objective of this study was to investigate the C sequestration potential of conservation agriculture (CA) (defined by minimal soil disturbance, maintaining permanent soil cover, and crop rotations). This study used micrometeorological methods to measure carbon dioxide (CO2) flux from several alternative CA practices in Harare, central Zimbabwe. Micrometeorological methods can detect differences in total CO2 emissions of agricultural management practices; our results show that CA practices produce less CO2 emissions. Over three years of measurement, the mean and standard error (SE) of CO2 emissions for the plot with the most consistent CA practices was 0.564 ± 0.0122 g CO2 m-2 h-1, significantly less than 0.928 ± 0.00859 g CO2 m-2 h-1 for the conventional tillage practice. Overall CA practices of no-till with the use of cover crops produced fewer CO2 emissions than conventional tillage or fallow
Nature of the 5f states in actinide metals
Actinide elements produce a plethora of interesting physical behaviors due to
the 5f states. This review compiles and analyzes progress in understanding of
the electronic and magnetic structure of the 5f states in actinide metals.
Particular interest is given to electron energy-loss spectroscopy and
many-electron atomic spectral calculations, since there is now an appreciable
library of core d -> valence f transitions for Th, U, Np, Pu, Am, and Cm. These
results are interwoven and discussed against published experimental data, such
as x-ray photoemission and absorption spectroscopy, transport measurements, and
electron, x-ray, and neutron diffraction, as well as theoretical results, such
as density-functional theory and dynamical mean-field theory.Comment: 136 pages in Word format, 29 Figures; Accepted to Reviews of Modern
Physic
The impact of donor and recipient common clinical and genetic variation on estimated glomerular filtration rate in a European renal transplant population
Genetic variation across the HLA is known to influence renalâtransplant outcome. However, the impact of genetic variation beyond the HLA is less clear. We tested the association of common genetic variation and clinical characteristics, from both the donor and recipient, with postâtransplant eGFR at different timeâpoints, out to 5âyears postâtransplantation.
We conducted GWAS metaâanalyses across 10,844 donors and recipients from five European ancestry cohorts. We also analysed the impact of polygenic risk scores (PRS), calculated using genetic variants associated with nonâtransplant eGFR, on postâtransplant eGFR.
PRS calculated using the recipient genotype alone, as well as combined donor and recipient genotypes were significantly associated with eGFR at 1âyear postâtransplant. 32% of the variability in eGFR at 1âyear postâtransplant was explained by our model containing clinical covariates (including weights for death/graftâfailure), principal components and combined donorârecipient PRS, with 0.3% contributed by the PRS. No individual genetic variant was significantly associated with eGFR postâtransplant in the GWAS.
This is the first study to examine PRS, composed of variants that impact kidney function in the general population, in a postâtransplant context. Despite PRS being a significant predictor of eGFR postâtransplant, the effect size of common genetic factors is limited compared to clinical variables
Mental Health and Substance Abuse Services Preferences among American Indian People of the Northern Midwest
This study examines factors that influence preferences between traditional cultural and western mental health and substance use associated care among American Indians from the northern Midwest. Personal interviews were conducted with 865 parents/caretakers of tribally enrolled youth concerning their preferences for traditional/cultural and formal healthcare for mental health or substance abuse problems. Adults strongly preferred traditional informal services to formal medical services. In addition, formal services on reservation were preferred to off reservation services. To better serve the mental health and substance abuse treatment needs of American Indians, traditional informal services should be incorporated into the current medical model
Integrated genetic map and genetic analysis of a region associated with root traits on the short arm of rye chromosome 1 in bread wheat
A ryeâwheat centric chromosome translocation 1RS.1BL has been widely used in wheat breeding programs around the world. Increased yield of translocation lines was probably a consequence of increased root biomass. In an effort to map loci-controlling root characteristics, homoeologous recombinants of 1RS with 1BS were used to generate a consensus genetic map comprised of 20 phenotypic and molecular markers, with an average spacing of 2.5Â cM. Physically, all recombination events were located in the distal 40% of the arms. A total of 68 recombinants was used and recombination breakpoints were aligned and ordered over map intervals with all the markers, integrated together in a genetic map. This approach enabled dissection of genetic components of quantitative traits, such as root traits, present on 1S. To validate our hypothesis, phenotyping of 45-day-old wheat roots was performed in five lines including three recombinants representative of the entire short arm along with bread wheat parents âPavon 76â and Pavon 1RS.1BL. Individual root characteristics were ranked and the genotypic rank sums were subjected to Quade analysis to compare the overall rooting ability of the genotypes. It appears that the terminal 15% of the rye 1RS arm carries gene(s) for greater rooting ability in wheat
- âŠ