112 research outputs found
Baryon structure in a quark-confining non-local NJL model
We study the nucleon and diquarks in a non-local Nambu-Jona-Lasinio model.
For certain parameters the model exhibits quark confinement, in the form of a
propagator without real poles. After truncation of the two-body channels to the
scalar and axial-vector diquarks, a relativistic Faddeev equation for nucleon
bound states is solved in the covariant diquark-quark picture. The dependence
of the nucleon mass on diquark masses is studied in detail. We find parameters
that lead to a simultaneous reasonable description of pions and nucleons. Both
the diquarks contribute attractively to the nucleon mass. Axial-vector diquark
correlations are seen to be important, especially in the confining phase of the
model. We study the possible implications of quark confinement for the
description of the diquarks and the nucleon. In particular, we find that it
leads to a more compact nucleon.Comment: 21 pages (RevTeX), 18 figures (eps
Hard sphere fluids in annular wedges: density distributions and depletion potentials
We analyze the density distribution and the adsorption of solvent hard
spheres in an annular slit formed by two large solute spheres or a large solute
and a wall at close distances by means of fundamental measure density
functional theory, anisotropic integral equations and simulations. We find that
the main features of the density distribution in the slit are described by an
effective, two--dimensional system of disks in the vicinity of a central
obstacle. For large solute--solvent size ratios, the resulting depletion force
has a straightforward geometrical interpretation which gives a precise
"colloidal" limit for the depletion interaction. For intermediate size ratios
5...10 and high solvent packing fractions larger than 0.4, the explicit density
functional results show a deep attractive well for the depletion potential at
solute contact, possibly indicating demixing in a binary mixture at low solute
and high solvent packing fraction.Comment: 39 page
Production Processes as a Tool to Study Parameterizations of Quark Confinement
We introduce diquarks as separable correlations in the two-quark Green's
function to facilitate the description of baryons as relativistic three-quark
bound states. These states then emerge as solutions of Bethe-Salpeter equations
for quarks and diquarks that interact via quark exchange. When solving these
equations we consider various dressing functions for the free quark and diquark
propagators that prohibit the existence of corresponding asymptotic states and
thus effectively parameterize confinement. We study the implications of
qualitatively different dressing functions on the model predictions for the
masses of the octet baryons as well as the electromagnetic and strong form
factors of the nucleon. For different dressing functions we in particular
compare the predictions for kaon photoproduction, , and
associated strangeness production, with experimental data.
This leads to conclusions on the permissibility of different dressing
functions.Comment: 43 pages, Latex, 28 eps files included via epsfig; version to be
published in Physical Review
Collective dynamics of colloids at fluid interfaces
The evolution of an initially prepared distribution of micron sized colloidal
particles, trapped at a fluid interface and under the action of their mutual
capillary attraction, is analyzed by using Brownian dynamics simulations. At a
separation \lambda\ given by the capillary length of typically 1 mm, the
distance dependence of this attraction exhibits a crossover from a logarithmic
decay, formally analogous to two-dimensional gravity, to an exponential decay.
We discuss in detail the adaption of a particle-mesh algorithm, as used in
cosmological simulations to study structure formation due to gravitational
collapse, to the present colloidal problem. These simulations confirm the
predictions, as far as available, of a mean-field theory developed previously
for this problem. The evolution is monitored by quantitative characteristics
which are particularly sensitive to the formation of highly inhomogeneous
structures. Upon increasing \lambda\ the dynamics show a smooth transition from
the spinodal decomposition expected for a simple fluid with short-ranged
attraction to the self-gravitational collapse scenario.Comment: 13 pages, 12 figures, revised, matches version accepted for
publication in the European Physical Journal
Free energy of colloidal particles at the surface of sessile drops
The influence of finite system size on the free energy of a spherical
particle floating at the surface of a sessile droplet is studied both
analytically and numerically. In the special case that the contact angle at the
substrate equals a capillary analogue of the method of images is
applied in order to calculate small deformations of the droplet shape if an
external force is applied to the particle. The type of boundary conditions for
the droplet shape at the substrate determines the sign of the capillary
monopole associated with the image particle. Therefore, the free energy of the
particle, which is proportional to the interaction energy of the original
particle with its image, can be of either sign, too. The analytic solutions,
given by the Green's function of the capillary equation, are constructed such
that the condition of the forces acting on the droplet being balanced and of
the volume constraint are fulfilled. Besides the known phenomena of attraction
of a particle to a free contact line and repulsion from a pinned one, we
observe a local free energy minimum for the particle being located at the drop
apex or at an intermediate angle, respectively. This peculiarity can be traced
back to a non-monotonic behavior of the Green's function, which reflects the
interplay between the deformations of the droplet shape and the volume
constraint.Comment: 24 pages, 19 figure
Nucleon form factors and a nonpointlike diquark
Nucleon form factors are calculated on q^2 in [0,3] GeV^2 using an Ansatz for
the nucleon's Fadde'ev amplitude motivated by quark-diquark solutions of the
relativistic Fadde'ev equation. Only the scalar diquark is retained, and it and
the quark are confined. A good description of the data requires a nonpointlike
diquark correlation with an electromagnetic radius of 0.8 r_pi. The composite,
nonpointlike nature of the diquark is crucial. It provides for diquark-breakup
terms that are of greater importance than the diquark photon absorption
contribution.Comment: 5 pages, REVTEX, epsfig, 3 figure
Sigma Terms of Light-Quark Hadrons
A calculation of the current-quark mass dependence of hadron masses can help
in using observational data to place constraints on the variation of nature's
fundamental parameters. A hadron's sigma-term is a measure of this dependence.
The connection between a hadron's sigma-term and the Feynman-Hellmann theorem
is illustrated with an explicit calculation for the pion using a rainbow-ladder
truncation of the Dyson-Schwinger equations: in the vicinity of the chiral
limit sigma_pi = m_pi/2. This truncation also provides a decent estimate of
sigma_rho because the two dominant self-energy corrections to the rho-meson's
mass largely cancel in their contribution to sigma_rho. The truncation is less
accurate for the omega, however, because there is little to compete with an
omega->rho+pi self-energy contribution that magnifies the value of sigma_omega
by ~25%. A Poincare' covariant Faddeev equation, which describes baryons as
composites of confined-quarks and -nonpointlike-diquarks, is solved to obtain
the current-quark mass dependence of the masses of the nucleon and Delta, and
thereby sigma_N and sigma_Delta. This "quark-core" piece is augmented by the
"pion cloud" contribution, which is positive. The analysis yields sigma_N~60MeV
and sigma_Delta~50MeV.Comment: 22 pages, reference list expande
Current quark mass dependence of nucleon magnetic moments and radii
A calculation of the current-quark-mass-dependence of nucleon static
electromagnetic properties is necessary in order to use observational data as a
means to place constraints on the variation of Nature's fundamental parameters.
A Poincare' covariant Faddeev equation, which describes baryons as composites
of confined-quarks and -nonpointlike-diquarks, is used to calculate this
dependence The results indicate that, like observables dependent on the
nucleons' magnetic moments, quantities sensitive to their magnetic and charge
radii, such as the energy levels and transition frequencies in Hydrogen and
Deuterium, might also provide a tool with which to place limits on the allowed
variation in Nature's constants.Comment: 23 pages, 2 figures, 4 tables, 4 appendice
Nucleon axial and pseudoscalar form factors from the covariant Faddeev equation
We compute the axial and pseudoscalar form factors of the nucleon in the
Dyson-Schwinger approach. To this end, we solve a covariant three-body Faddeev
equation for the nucleon wave function and determine the matrix elements of the
axialvector and pseudoscalar isotriplet currents. Our only input is a
well-established and phenomenologically successful ansatz for the
nonperturbative quark-gluon interaction. As a consequence of the axial
Ward-Takahashi identity that is respected at the quark level, the
Goldberger-Treiman relation is reproduced for all current-quark masses. We
discuss the timelike pole structure of the quark-antiquark vertices that enters
the nucleon matrix elements and determines the momentum dependence of the form
factors. Our result for the axial charge underestimates the experimental value
by 20-25% which might be a signal of missing pion-cloud contributions. The
axial and pseudoscalar form factors agree with phenomenological and lattice
data in the momentum range above Q^2 ~ 1...2 GeV^2.Comment: 17 pages, 7 figures, 1 tabl
Confinement Phenomenology in the Bethe-Salpeter Equation
We consider the solution of the Bethe-Salpeter equation in Euclidean metric
for a qbar-q vector meson in the circumstance where the dressed quark
propagators have time-like complex conjugate mass poles. This approximates
features encountered in recent QCD modeling via the Dyson-Schwinger equations;
the absence of real mass poles simulates quark confinement. The analytic
continuation in the total momentum necessary to reach the mass shell for a
meson sufficiently heavier than 1 GeV leads to the quark poles being within the
integration domain for two variables in the standard approach. Through Feynman
integral techniques, we show how the analytic continuation can be implemented
in a way suitable for a practical numerical solution. We show that the would-be
qbar-q width to the meson generated from one quark pole is exactly cancelled by
the effect of the conjugate partner pole; the meson mass remains real and there
is no spurious qbar-q production threshold. The ladder kernel we employ is
consistent with one-loop perturbative QCD and has a two-parameter infrared
structure found to be successful in recent studies of the light SU(3) meson
sector.Comment: Submitted for publication; 10.5x2-column pages, REVTEX 4, 3
postscript files making 3 fig
- …