112 research outputs found

    Baryon structure in a quark-confining non-local NJL model

    Full text link
    We study the nucleon and diquarks in a non-local Nambu-Jona-Lasinio model. For certain parameters the model exhibits quark confinement, in the form of a propagator without real poles. After truncation of the two-body channels to the scalar and axial-vector diquarks, a relativistic Faddeev equation for nucleon bound states is solved in the covariant diquark-quark picture. The dependence of the nucleon mass on diquark masses is studied in detail. We find parameters that lead to a simultaneous reasonable description of pions and nucleons. Both the diquarks contribute attractively to the nucleon mass. Axial-vector diquark correlations are seen to be important, especially in the confining phase of the model. We study the possible implications of quark confinement for the description of the diquarks and the nucleon. In particular, we find that it leads to a more compact nucleon.Comment: 21 pages (RevTeX), 18 figures (eps

    Hard sphere fluids in annular wedges: density distributions and depletion potentials

    Get PDF
    We analyze the density distribution and the adsorption of solvent hard spheres in an annular slit formed by two large solute spheres or a large solute and a wall at close distances by means of fundamental measure density functional theory, anisotropic integral equations and simulations. We find that the main features of the density distribution in the slit are described by an effective, two--dimensional system of disks in the vicinity of a central obstacle. For large solute--solvent size ratios, the resulting depletion force has a straightforward geometrical interpretation which gives a precise "colloidal" limit for the depletion interaction. For intermediate size ratios 5...10 and high solvent packing fractions larger than 0.4, the explicit density functional results show a deep attractive well for the depletion potential at solute contact, possibly indicating demixing in a binary mixture at low solute and high solvent packing fraction.Comment: 39 page

    Production Processes as a Tool to Study Parameterizations of Quark Confinement

    Get PDF
    We introduce diquarks as separable correlations in the two-quark Green's function to facilitate the description of baryons as relativistic three-quark bound states. These states then emerge as solutions of Bethe-Salpeter equations for quarks and diquarks that interact via quark exchange. When solving these equations we consider various dressing functions for the free quark and diquark propagators that prohibit the existence of corresponding asymptotic states and thus effectively parameterize confinement. We study the implications of qualitatively different dressing functions on the model predictions for the masses of the octet baryons as well as the electromagnetic and strong form factors of the nucleon. For different dressing functions we in particular compare the predictions for kaon photoproduction, γp→KΛ\gamma p\to K\Lambda, and associated strangeness production, pp→pKΛpp\to pK\Lambda with experimental data. This leads to conclusions on the permissibility of different dressing functions.Comment: 43 pages, Latex, 28 eps files included via epsfig; version to be published in Physical Review

    Collective dynamics of colloids at fluid interfaces

    Full text link
    The evolution of an initially prepared distribution of micron sized colloidal particles, trapped at a fluid interface and under the action of their mutual capillary attraction, is analyzed by using Brownian dynamics simulations. At a separation \lambda\ given by the capillary length of typically 1 mm, the distance dependence of this attraction exhibits a crossover from a logarithmic decay, formally analogous to two-dimensional gravity, to an exponential decay. We discuss in detail the adaption of a particle-mesh algorithm, as used in cosmological simulations to study structure formation due to gravitational collapse, to the present colloidal problem. These simulations confirm the predictions, as far as available, of a mean-field theory developed previously for this problem. The evolution is monitored by quantitative characteristics which are particularly sensitive to the formation of highly inhomogeneous structures. Upon increasing \lambda\ the dynamics show a smooth transition from the spinodal decomposition expected for a simple fluid with short-ranged attraction to the self-gravitational collapse scenario.Comment: 13 pages, 12 figures, revised, matches version accepted for publication in the European Physical Journal

    Free energy of colloidal particles at the surface of sessile drops

    Full text link
    The influence of finite system size on the free energy of a spherical particle floating at the surface of a sessile droplet is studied both analytically and numerically. In the special case that the contact angle at the substrate equals π/2\pi/2 a capillary analogue of the method of images is applied in order to calculate small deformations of the droplet shape if an external force is applied to the particle. The type of boundary conditions for the droplet shape at the substrate determines the sign of the capillary monopole associated with the image particle. Therefore, the free energy of the particle, which is proportional to the interaction energy of the original particle with its image, can be of either sign, too. The analytic solutions, given by the Green's function of the capillary equation, are constructed such that the condition of the forces acting on the droplet being balanced and of the volume constraint are fulfilled. Besides the known phenomena of attraction of a particle to a free contact line and repulsion from a pinned one, we observe a local free energy minimum for the particle being located at the drop apex or at an intermediate angle, respectively. This peculiarity can be traced back to a non-monotonic behavior of the Green's function, which reflects the interplay between the deformations of the droplet shape and the volume constraint.Comment: 24 pages, 19 figure

    Nucleon form factors and a nonpointlike diquark

    Get PDF
    Nucleon form factors are calculated on q^2 in [0,3] GeV^2 using an Ansatz for the nucleon's Fadde'ev amplitude motivated by quark-diquark solutions of the relativistic Fadde'ev equation. Only the scalar diquark is retained, and it and the quark are confined. A good description of the data requires a nonpointlike diquark correlation with an electromagnetic radius of 0.8 r_pi. The composite, nonpointlike nature of the diquark is crucial. It provides for diquark-breakup terms that are of greater importance than the diquark photon absorption contribution.Comment: 5 pages, REVTEX, epsfig, 3 figure

    Sigma Terms of Light-Quark Hadrons

    Full text link
    A calculation of the current-quark mass dependence of hadron masses can help in using observational data to place constraints on the variation of nature's fundamental parameters. A hadron's sigma-term is a measure of this dependence. The connection between a hadron's sigma-term and the Feynman-Hellmann theorem is illustrated with an explicit calculation for the pion using a rainbow-ladder truncation of the Dyson-Schwinger equations: in the vicinity of the chiral limit sigma_pi = m_pi/2. This truncation also provides a decent estimate of sigma_rho because the two dominant self-energy corrections to the rho-meson's mass largely cancel in their contribution to sigma_rho. The truncation is less accurate for the omega, however, because there is little to compete with an omega->rho+pi self-energy contribution that magnifies the value of sigma_omega by ~25%. A Poincare' covariant Faddeev equation, which describes baryons as composites of confined-quarks and -nonpointlike-diquarks, is solved to obtain the current-quark mass dependence of the masses of the nucleon and Delta, and thereby sigma_N and sigma_Delta. This "quark-core" piece is augmented by the "pion cloud" contribution, which is positive. The analysis yields sigma_N~60MeV and sigma_Delta~50MeV.Comment: 22 pages, reference list expande

    Current quark mass dependence of nucleon magnetic moments and radii

    Full text link
    A calculation of the current-quark-mass-dependence of nucleon static electromagnetic properties is necessary in order to use observational data as a means to place constraints on the variation of Nature's fundamental parameters. A Poincare' covariant Faddeev equation, which describes baryons as composites of confined-quarks and -nonpointlike-diquarks, is used to calculate this dependence The results indicate that, like observables dependent on the nucleons' magnetic moments, quantities sensitive to their magnetic and charge radii, such as the energy levels and transition frequencies in Hydrogen and Deuterium, might also provide a tool with which to place limits on the allowed variation in Nature's constants.Comment: 23 pages, 2 figures, 4 tables, 4 appendice

    Nucleon axial and pseudoscalar form factors from the covariant Faddeev equation

    Full text link
    We compute the axial and pseudoscalar form factors of the nucleon in the Dyson-Schwinger approach. To this end, we solve a covariant three-body Faddeev equation for the nucleon wave function and determine the matrix elements of the axialvector and pseudoscalar isotriplet currents. Our only input is a well-established and phenomenologically successful ansatz for the nonperturbative quark-gluon interaction. As a consequence of the axial Ward-Takahashi identity that is respected at the quark level, the Goldberger-Treiman relation is reproduced for all current-quark masses. We discuss the timelike pole structure of the quark-antiquark vertices that enters the nucleon matrix elements and determines the momentum dependence of the form factors. Our result for the axial charge underestimates the experimental value by 20-25% which might be a signal of missing pion-cloud contributions. The axial and pseudoscalar form factors agree with phenomenological and lattice data in the momentum range above Q^2 ~ 1...2 GeV^2.Comment: 17 pages, 7 figures, 1 tabl

    Confinement Phenomenology in the Bethe-Salpeter Equation

    Full text link
    We consider the solution of the Bethe-Salpeter equation in Euclidean metric for a qbar-q vector meson in the circumstance where the dressed quark propagators have time-like complex conjugate mass poles. This approximates features encountered in recent QCD modeling via the Dyson-Schwinger equations; the absence of real mass poles simulates quark confinement. The analytic continuation in the total momentum necessary to reach the mass shell for a meson sufficiently heavier than 1 GeV leads to the quark poles being within the integration domain for two variables in the standard approach. Through Feynman integral techniques, we show how the analytic continuation can be implemented in a way suitable for a practical numerical solution. We show that the would-be qbar-q width to the meson generated from one quark pole is exactly cancelled by the effect of the conjugate partner pole; the meson mass remains real and there is no spurious qbar-q production threshold. The ladder kernel we employ is consistent with one-loop perturbative QCD and has a two-parameter infrared structure found to be successful in recent studies of the light SU(3) meson sector.Comment: Submitted for publication; 10.5x2-column pages, REVTEX 4, 3 postscript files making 3 fig
    • …
    corecore