15 research outputs found

    Tropical summer induces DNA fragmentation in boar spermatozoa: implications for evaluating seasonal infertility

    Get PDF
    Summer infertility continues to undermine pig productivity, costing the pig industry millions in annual losses. The boar’s inefficient capacity to sweat, non-pendulous scrotum and the extensive use of European breeds in tropical conditions, can make the boar particularly vulnerable to the effects of heat stress; however, the link between summer heat stress and boar sperm DNA damage has not yet been demonstrated. Semen from five Large White boars was collected and evaluated during the early dry, late dry and peak wet seasons to determine the effect of seasonal heat stress on the quality and DNA integrity of boar spermatozoa. DNA damage in spermatozoa during the peak wet was 16-fold greater than during the early dry and nearly 9-fold greater than during the late dry season. Sperm concentration was 1.6-fold lower in the peak wet than early dry whereas no difference was found across several motility parameters as determined by computer-assisted sperm analysis. These results demonstrate that tropical summer (peak wet season) induces DNA damage and reduces concentration without depressing motility in boar spermatozoa, suggesting that traditional methods of evaluating sperm motility may not detect inherently compromised spermatozoa. Boar management strategies (such as antioxidant supplementation) need to be developed to specifically mitigate this problem

    Defective germline reprogramming rewires the spermatogonial transcriptome.

    Get PDF
    Defective germline reprogramming in Piwil4 (Miwi2)- and Dnmt3l-deficient mice results in the failure to reestablish transposon silencing, meiotic arrest and progressive loss of spermatogonia. Here we sought to understand the molecular basis for this spermatogonial dysfunction. Through a combination of imaging, conditional genetics and transcriptome analysis, we demonstrate that germ cell elimination in the respective mutants arises as a result of defective de novo genome methylation during reprogramming rather than because of a function for the respective factors within spermatogonia. In both Miwi2-/- and Dnmt3l-/- spermatogonia, the intracisternal-A particle (IAP) family of endogenous retroviruses is derepressed, but, in contrast to meiotic cells, DNA damage is not observed. Instead, we find that unmethylated IAP promoters rewire the spermatogonial transcriptome by driving expression of neighboring genes. Finally, spermatogonial numbers, proliferation and differentiation are altered in Miwi2-/- and Dnmt3l-/- mice. In summary, defective reprogramming deregulates the spermatogonial transcriptome and may underlie spermatogonial dysfunction
    corecore