16 research outputs found

    Exploration Experiments in Wavelet Video Coding

    Get PDF
    This document defines the Exploration Experiments (EE) to be conducted by the VidWav AHG till the Bangkok meeting. The common software platform was decided to be used by all the participants in the EEs. It is already available on the CVS server provided by RWTH. During the Poznan meeting, tools had been identified as potentially useful, and the associated experiment was not completes for this meeting. These previous EE are being extended till next meeting

    Status Report on Wavelet Video Coding Exploration

    Get PDF
    Current 3-D wavelet video coding schemes with Motion Compensated Temporal Filtering (MCTF) can be divided into two main categories. The first performs MCTF on the input video sequence directly in the full resolution spatial domain before spatial transform and is often referred to as spatial domain MCTF. The second performs MCTF in wavelet subband domain generated by spatial transform, being often referred to as in-band MCTF. Figure 1(a) is a general framework which can support both of the above two schemes. Firstly, a pre-spatial decomposition can be applied to the input video sequence. Then a multi-level MCTF decomposes the video frames into several temporal subbands, such as temporal highpass subbands and temporal lowpass subbands. After temporal decomposition, a post-spatial decomposition is applied to each temporal subband to further decompose the frames spatially. In the framework, the whole spatial decomposition operations for each temporal subband are separated into two parts: pre-spatial decomposition operations and post-spatial decomposition operations. The pre-spatial decomposition can be void for some schemes while non-empty for other schemes. Figure 1(b) shows the case of the t+2D scheme where pre-spatial decomposition is empty. Figure 1(c) shows the case of the 2D+t+2D scheme where pre-spatial decomposition is usually a multi-level dyadic wavelet transform. Depending on the results of pre-spatial decomposition, the temporal decomposition should perform different MCTF operations, either in spatial domain or in subband domain. (a) The general coding framework; (b) Case for the t+2D scheme (Pre-spatial decomposition is void); (c) Case for the 2D+t+2D scheme (Pre-spatial decomposition exists). Figure 1: Framework for 3-D wavelet video coding. A first classification of SVC schemes according to the order the spatial and temporal wavelet transform are performed was introduced in the first Scalable Video Models [1], [2] on the base of the Call for Proposals responses at Munich meeting. The so called t+2D schemes (one example is [3]) performs first an MCTF, producing temporal subband frames, then the spatial DWT is applied on each one of these frames. Alternatively, in a 2D+t scheme (one example is [4]), a spatial DWT is applied first to each video frame and then MCTF is made on spatial subbands. A third approach named 2D+t+2D uses a first stage DWT to produce reference video sequences at various resolutions; t+2D transforms are then performed on each resolution level of the obtained spatial pyramid. Each scheme has evidenced its pros and cons [5,6] in terms of coding performance. From a theoretical point of view, the critical aspects of the above SVC scheme mainly reside: i) in the coherence and trustworthiness of the motion estimation at various scales (especially for t+2D schemes); ii) in the difficulties to compensate for the shift-variant nature of the wavelet transform (especially for 2D+t schemes); iii) in the performance of inter-scale prediction (ISP) mechanisms (especially for 2D+t+2D schemes). An analysis of the differences between schemes is also reported in the sequel

    Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes.

    Get PDF
    Abstract BACKGROUND: The cardiovascular effects of adding once-weekly treatment with exenatide to usual care in patients with type 2 diabetes are unknown. METHODS: We randomly assigned patients with type 2 diabetes, with or without previous cardiovascular disease, to receive subcutaneous injections of extended-release exenatide at a dose of 2 mg or matching placebo once weekly. The primary composite outcome was the first occurrence of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke. The coprimary hypotheses were that exenatide, administered once weekly, would be noninferior to placebo with respect to safety and superior to placebo with respect to efficacy. RESULTS: In all, 14,752 patients (of whom 10,782 [73.1%] had previous cardiovascular disease) were followed for a median of 3.2 years (interquartile range, 2.2 to 4.4). A primary composite outcome event occurred in 839 of 7356 patients (11.4%; 3.7 events per 100 person-years) in the exenatide group and in 905 of 7396 patients (12.2%; 4.0 events per 100 person-years) in the placebo group (hazard ratio, 0.91; 95% confidence interval [CI], 0.83 to 1.00), with the intention-to-treat analysis indicating that exenatide, administered once weekly, was noninferior to placebo with respect to safety (P<0.001 for noninferiority) but was not superior to placebo with respect to efficacy (P=0.06 for superiority). The rates of death from cardiovascular causes, fatal or nonfatal myocardial infarction, fatal or nonfatal stroke, hospitalization for heart failure, and hospitalization for acute coronary syndrome, and the incidence of acute pancreatitis, pancreatic cancer, medullary thyroid carcinoma, and serious adverse events did not differ significantly between the two groups. CONCLUSIONS: Among patients with type 2 diabetes with or without previous cardiovascular disease, the incidence of major adverse cardiovascular events did not differ significantly between patients who received exenatide and those who received placebo. (Funded by Amylin Pharmaceuticals; EXSCEL ClinicalTrials.gov number, NCT01144338 .)

    No-reference image and video quality assessment: a classification and review of recent approaches

    Get PDF
    corecore