759 research outputs found

    Verifying the Kugo-Ojima Confinement Criterion in Landau Gauge Yang-Mills Theory

    Full text link
    Expanding the Landau gauge gluon and ghost two-point functions in a power series we investigate their infrared behavior. The corresponding powers are constrained through the ghost Dyson-Schwinger equation by exploiting multiplicative renormalizability. Without recourse to any specific truncation we demonstrate that the infrared powers of the gluon and ghost propagators are uniquely related to each other. Constraints for these powers are derived, and the resulting infrared enhancement of the ghost propagator signals that the Kugo-Ojima confinement criterion is fulfilled in Landau gauge Yang-Mills theory.Comment: 4 pages, no figures; version to be published in Physical Review Letter

    Die Ausnutzung des Reaktor FR 2 als Forschungseinrichtung

    Get PDF

    Superlattice ultrasonic generation

    Get PDF
    We report the first experimental evidence for the resonant excitation of coherent high-frequency acoustic phonons in semiconducting doping superstructures by far-infrared laser radiation. After a grating-coupled delta-doped silicon doping superlattice is illuminated with ~1 kW/mm2 nanosecond-pulsed 246 GHz laser radiation, a delayed nanosecond pulse is detected by a superconducting bolometer at a time corresponding to the appropriate time-of-flight for ballistic longitudinal acoustic phonons across the (100) silicon substrate. The absorbed phonon power density in the microbolometer is observed to be ~10 ÎĽW/mm2, in agreement with theory. The phonon pulse duration also matches the laser pulse duration. The absence of any delayed transverse acoustic phonon signal by the superconducting bolometer is particularly striking and implies there is little or no incoherent phonon generation occurring in the process

    Glueballs in a Hamiltonian Light-Front Approach to Pure-Glue QCD

    Get PDF
    We calculate a renormalized Hamiltonian for pure-glue QCD and diagonalize it. The renormalization procedure is designed to produce a Hamiltonian that will yield physical states that rapidly converge in an expansion in free-particle Fock-space sectors. To make this possible, we use light-front field theory to isolate vacuum effects, and we place a smooth cutoff on the Hamiltonian to force its free-state matrix elements to quickly decrease as the difference of the free masses of the states increases. The cutoff violates a number of physical principles of light-front pure-glue QCD, including Lorentz covariance and gauge covariance. This means that the operators in the Hamiltonian are not required to respect these physical principles. However, by requiring the Hamiltonian to produce cutoff-independent physical quantities and by requiring it to respect the unviolated physical principles of pure-glue QCD, we are able to derive recursion relations that define the Hamiltonian to all orders in perturbation theory in terms of the running coupling. We approximate all physical states as two-gluon states, and use our recursion relations to calculate to second order the part of the Hamiltonian that is required to compute the spectrum. We diagonalize the Hamiltonian using basis-function expansions for the gluons' color, spin, and momentum degrees of freedom. We examine the sensitivity of our results to the cutoff and use them to analyze the nonperturbative scale dependence of the coupling. We investigate the effect of the dynamical rotational symmetry of light-front field theory on the rotational degeneracies of the spectrum and compare the spectrum to recent lattice results. Finally, we examine our wave functions and analyze the various sources of error in our calculation.Comment: 75 pages, 17 figures, 1 tabl

    The anomalous threshold, confinement, and an essential singularity in the heavy-light form factor

    Get PDF
    The analytic behavior of the heavy-light meson form factor is investigated using several relativistic examples including unconfined, weakly confined, and strongly confined mesons. It is observed that confinement erases the anomalous threshold singularity and also induces an essential singularity at the normal annihilation threshold. In the weak confinement limit, the "would be" anomalous threshold contribution is identical to that of the real singularity on its space-like side.Comment: Latex 2.09 with epsf.sty. 24 pages of text and 8 postscript figures. Postscript version of complete paper will also be available soon at http://phenom.physics.wisc.edu/pub/preprints/1997/madph-97-983 or at ftp://phenom.physics.wisc.edu/pub/preprints/1997/madph-97-98

    Reduction of Couplings in Quantum Field Theories with applications in Finite Theories and the MSSM

    Full text link
    We apply the method of reduction of couplings in a Finite Unified Theory and in the MSSM. The method consists on searching for renormalization group invariant relations among couplings of a renormalizable theory holding to all orders in perturbation theory. It has a remarkable predictive power since, at the unification scale, it leads to relations between gauge and Yukawa couplings in the dimensionless sectors and relations involving the trilinear terms and the Yukawa couplings, as well as a sum rule among the scalar masses and the unified gaugino mass in the soft breaking sector. In both the MSSM and the FUT model we predict the masses of the top and bottom quarks and the light Higgs in remarkable agreement with the experiment. Furthermore we also predict the masses of the other Higgses, as well as the supersymmetric spectrum, both being in very confortable agreement with the LHC bounds on Higgs and supersymmetric particles.Comment: 18 pages, 4 figures. To appear in the proceedings of LT-10, Varna. Based on invited talks given at: LT-10, Varna; PACT-2013, Madrid; SQS'2013, Dubna; CORFU 2013, Corfu, and in several invited seminar

    Phase structure of lattice QCD for general number of flavors

    Full text link
    We investigate the phase structure of lattice QCD for the general number of flavors in the parameter space of gauge coupling constant and quark mass, employing the one-plaquette gauge action and the standard Wilson quark action. Performing a series of simulations for the number of flavors NF=6N_F=6--360 with degenerate-mass quarks, we find that when NF≥7N_F \ge 7 there is a line of a bulk first order phase transition between the confined phase and a deconfined phase at a finite current quark mass in the strong coupling region and the intermediate coupling region. The massless quark line exists only in the deconfined phase. Based on these numerical results in the strong coupling limit and in the intermediate coupling region, we propose the following phase structure, depending on the number of flavors whose masses are less than Λd\Lambda_d which is the physical scale characterizing the phase transition in the weak coupling region: When NF≥17N_F \ge 17, there is only a trivial IR fixed point and therefore the theory in the continuum limit is free. On the other hand, when 16≥NF≥716 \ge N_F \ge 7, there is a non-trivial IR fixed point and therefore the theory is non-trivial with anomalous dimensions, however, without quark confinement. Theories which satisfy both quark confinement and spontaneous chiral symmetry breaking in the continuum limit exist only for NF≤6N_F \le 6.Comment: RevTeX, 20 pages, 43 PS figure

    Bulk fields with general brane kinetic terms

    Full text link
    We analyse the effect of general brane kinetic terms for bulk scalars, fermions and gauge bosons in theories with extra dimensions, with and without supersymmetry. We find in particular a singular behaviour when these terms contain derivatives orthogonal to the brane. This is brought about by δ(0)\delta(0) divergences arising at second and higher order in perturbation theory. We argue that this behaviour can be smoothed down by classical renormalization.Comment: 31 pages, v2 few typos correcte
    • …
    corecore