18 research outputs found

    Peptide Antigen Treatment of Naive and Virus-Immune Mice: Antigen-Specific Tolerance Versus Immunopathology

    Get PDF
    AbstractPeptide-specific down-regulation of T cell responses may represent a powerful tool to intervene in autoimmune diseases or graft rejections. It is therefore important to know whether peptide treatment tolerizes both naive and antigen-experienced memory T lymphocytes. Here we show that a major histocompatibility complex class I binding peptide, derived from the glycoprotein (GP33 peptide) of lymphocytic choriomeningitis virus (LCMV), specifically tolerized naive cytotoxic T lymphocytes (CTL) when administered three times intraperitoneally in incomplete Freund's adjuvants. However, in the presence of GP33-specific memory CTL in LCMV-primed mice, the same treatment had a general immunosuppressive effect on unrelated third-party antigen-specific T cell responses and caused severe immunopathological damage to the spleen

    Mocravimod, a Selective Sphingosine-1-Phosphate Receptor Modulator, in Allogeneic Hematopoietic Stem Cell Transplantation for Malignancy

    Full text link
    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains the sole curative option for patients with acute myelogenous leukemia. Outcomes are limited by leukemia relapse, graft-versus-host disease (GVHD), and abnormal immune reconstitution. Mocravimod (KRP203) is an oral sphingosine-1-phosphate receptor (S1PR) modulator that blocks the signal required by T cells to egress from lymph nodes and other lymphoid organs. Mocravimod retains T cell effector function, a main differentiator to immunosuppressants. In preclinical models, mocravimod improves survival by maintaining graft-versus-leukemia (GVL) activity while reducing GVHD. In patients undergoing allo-HSCT for hematological malignancies, mocravimod is postulated to prevent GVHD by redistributing allogeneic donor T cells to lymphoid tissues while allowing a sufficient GVL effect in the lymphoid, where malignant cells usually reside. The primary objective of this study was to assess the safety and tolerability of mocravimod in patients undergoing allo-HSCT for hematologic malignancies. Secondary objectives were to determine the pharmacokinetic profiles of mocravimod and its active metabolite mocravimod-phosphate in this patient group, as well as to assess GVHD-free, relapse free survival at 6 months after the last treatment. In this 2-part, single- and 2-arm randomized, open-label trial, we evaluated the safety, tolerability, and pharmacokinetics of mocravimod in allo-HSCT recipients (ClinicalTrials.gov identifier NCT01830010). Patients received either 1 mg or 3 mg mocravimod per day on top of standard of care GVHD prophylaxis with either cyclosporine A/methotrexate or tacrolimus/methotrexate. We found that mocravimod can be safely added to standard treatment regimens in patients with hematologic malignancies requiring allo-HSCT. Mocravimod resulted in a significant reduction of circulating lymphocyte numbers and had no negative impact on engraftment and transplantation outcomes. Our results indicate that mocravimod is safe and support a larger study to investigate its efficacy in a homogeneous acute myelogenous leukemia patient population undergoing allo-HSCT

    T Cell-Dependence of Lassa Fever Pathogenesis

    Get PDF
    Lassa virus (LASV), the causative agent of Lassa fever (LF), is endemic in West Africa, accounting for substantial morbidity and mortality. In spite of ongoing research efforts, LF pathogenesis and mechanisms of LASV immune control remain poorly understood. While normal laboratory mice are resistant to LASV, we report that mice expressing humanized instead of murine MHC class I (MHC-I) failed to control LASV infection and develop severe LF. Infection of MHC-I knockout mice confirmed a key role for MHC-I-restricted T cell responses in controlling LASV. Intriguingly we found that T cell depletion in LASV-infected HHD mice prevented disease, irrespective of high-level viremia. Widespread activation of monocyte/macrophage lineage cells, manifest through inducible NO synthase expression, and elevated IL-12p40 serum levels indicated a systemic inflammatory condition. The absence of extensive monocyte/macrophage activation in T cell-depleted mice suggested that T cell responses contribute to deleterious innate inflammatory reactions and LF pathogenesis. Our observations in mice indicate a dual role for T cells, not only protecting from LASV, but also enhancing LF pathogenesis. The possibility of T cell-driven enhancement and immunopathogenesis should be given consideration in future LF vaccine development
    corecore