14 research outputs found

    Monitoring and Targeting Anti-VEGF Induced Hypoxia within the Viable Tumor by 19F–MRI and Multispectral Analysis

    No full text
    The effect of anti-angiogenic agents on tumor oxygenation has been in question for a number of years, where both increases and decreases in tumor pO2 have been observed. This dichotomy in results may be explained by the role of vessel normalization in the response of tumors to anti-angiogenic therapy, where anti-angiogenic therapies may initially improve both the structure and the function of tumor vessels, but more sustained or potent anti-angiogenic treatments will produce an anti-vascular response, producing a more hypoxic environment. The first goal of this study was to employ multispectral (MS) 19F–MRI to noninvasively quantify viable tumor pO2 and evaluate the ability of a high dose of an antibody to vascular endothelial growth factor (VEGF) to produce a strong and prolonged anti-vascular response that results in significant tumor hypoxia. The second goal of this study was to target the anti-VEGF induced hypoxic tumor micro-environment with an agent, tirapazamine (TPZ), which has been designed to target hypoxic regions of tumors. These goals have been successfully met, where an antibody that blocks both murine and human VEGF-A (B20.4.1.1) was found by MS 19F–MRI to produce a strong anti-vascular response and reduce viable tumor pO2 in an HM-7 xenograft model. TPZ was then employed to target the anti-VEGF-induced hypoxic region. The combination of anti-VEGF and TPZ strongly suppressed HM-7 tumor growth and was superior to control and both monotherapies. This study provides evidence that clinical trials combining anti-vascular agents with hypoxia-activated prodrugs should be considered to improved efficacy in cancer patients

    Dependence of Tumor Cell Lines and Patient-Derived Tumors on the NAD Salvage Pathway Renders Them Sensitive to NAMPT Inhibition with GNE-618

    Get PDF
    Nicotinamide adenine dinucleotide (NAD) is a critical metabolite that is required for a range of cellular reactions. A key enzyme in the NAD salvage pathway is nicotinamide phosphoribosyl transferase (NAMPT), and here, we describe GNE-618, an NAMPT inhibitor that depletes NAD and induces cell death in vitro and in vivo. While cells proficient for nicotinic acid phosphoribosyl transferase (NAPRT1) can be protected from NAMPT inhibition as they convert nicotinic acid (NA) to NAD independent of the salvage pathway, this protection only occurs if NA is added before NAD depletion. We also demonstrate that tumor cells are unable to generate NAD by de novo synthesis as they lack expression of key enzymes in this pathway, thus providing a mechanistic rationale for the reliance of tumor cells on the NAD salvage pathway. Identifying tumors that are sensitive to NAMPT inhibition is one potential way to enhance the therapeutic effectiveness of an NAMPT inhibitor, and here, we show that NAMPT, but not NAPRT1, mRNA and protein levels inversely correlate with sensitivity to GNE-618 across a panel of 53 non-small cell lung carcinoma cell lines. Finally, we demonstrate that GNE-618 reduced tumor growth in a patient-derived model, which is thought to more closely represent heterogeneous primary patient tumors. Thus, we show that dependence of tumor cells on the NAD salvage pathway renders them sensitive to GNE-618 in vitro and in vivo, and our data support further evaluation of the use of NAMPT mRNA and protein levels as predictors of overall sensitivity

    Expression Profile of BCL-2, BCL-X L , and MCL-1 Predicts Pharmacological Response to the BCL-2 Selective Antagonist Venetoclax in Multiple Myeloma Models

    No full text
    International audienceBCL-2 family proteins dictate survival of human multiple myeloma cells, making them attractive drug targets. Indeed, multiple myeloma cells are sensitive to antagonists that selectively target prosurvival proteins such as BCL-2/BCL-X L (ABT-737 and ABT-263/navitoclax) or BCL-2 only (ABT-199/GDC-0199/vene-toclax). Resistance to these three drugs is mediated by expression of MCL-1. However, given the selectivity profile of venetoclax it is unclear whether coexpression of BCL-X L also affects antitumor responses to venetoclax in multiple myeloma. In multiple mye-loma cell lines (n ¼ 21), BCL-2 is expressed but sensitivity to venetoclax correlated with high BCL-2 and low BCL-X L or MCL-1 expression. Multiple myeloma cells that coexpress BCL-2 and BCL-X L were resistant to venetoclax but sensitive to a BCL-X L – selective inhibitor (A-1155463). Multiple myeloma xenograft models that coexpressed BCL-X L or MCL-1 with BCL-2 were also resistant to venetoclax. Resistance to venetoclax was mitigated by cotreatment with bortezomib in xenografts that coex-pressed BCL-2 and MCL-1 due to upregulation of NOXA, a proapoptotic factor that neutralizes MCL-1. In contrast, xeno-grafts that expressed BCL-X L , MCL-1, and BCL-2 were more sensitive to the combination of bortezomib with a BCL-X L selective inhibitor (A-1331852) but not with venetoclax cotreatment when compared with monotherapies. IHC of multiple myeloma patient bone marrow biopsies and aspirates (n ¼ 95) revealed high levels of BCL-2 and BCL-X L in 62% and 43% of evaluable samples, respectively, while 34% were characterized as BCL-2 High /BCL-X L Low. In addition to MCL-1, our data suggest that BCL-X L may also be a potential resistance factor to venetoclax monotherapy and in combination with bortezomib. Mol Cancer Ther; 15(5); 1–13. Ó2016 AACR

    Supplementation of Nicotinic Acid with NAMPT Inhibitors Results in Loss of In Vivo Efficacy in NAPRT1-Deficient Tumor Models

    Get PDF
    Nicotinamide adenine dinucleotide (NAD) is a metabolite essential for cell survival and generated de novo from tryptophan or recycled from nicotinamide (NAM) through the nicotinamide phosphoribosyltransferase (NAMPT)-dependent salvage pathway. Alternatively, nicotinic acid (NA) is metabolized to NAD through the nicotinic acid phosphoribosyltransferase domain containing 1 (NAPRT1)-dependent salvage pathway. Tumor cells are more reliant on the NAMPT salvage pathway making this enzyme an attractive therapeutic target. Moreover, the therapeutic index of NAMPT inhibitors may be increased by in NAPRT-deficient tumors by NA supplementation as normal tissues may regenerate NAD through NAPRT1. To confirm the latter, we tested novel NAMPT inhibitors, GNE-617 and GNE-618, in cell culture- and patient-derived tumor models. While NA did not protect NAPRT1-deficient tumor cell lines from NAMPT inhibition in vitro, it rescued efficacy of GNE-617 and GNE-618 in cell culture- and patient-derived tumor xenografts in vivo. NA co-treatment increased NAD and NAM levels in NAPRT1-deficient tumors to levels that sustained growth in vivo. Furthermore, NAM co-administration with GNE-617 led to increased tumor NAD levels and rescued in vivo efficacy as well. Importantly, tumor xenografts remained NAPRT1-deficient in the presence of NA, indicating that the NAPRT1-dependent pathway is not reactivated. Protection of NAPRT1-deficient tumors in vivo may be due to increased circulating levels of metabolites generated by mouse liver, in response to NA or through competitive reactivation of NAMPT by NAM. Our results have important implications for the development of NAMPT inhibitors when considering NA co-treatment as a rescue strategy

    Multimodal Microvascular Imaging Reveals that Selective Inhibition of Class I PI3K Is Sufficient to Induce an Antivascular Response

    Get PDF
    The phosphatidylinositol 3-kinase (PI3K) pathway is a central mediator of vascular endothelial growth factor (VEGF)-driven angiogenesis. The discovery of small molecule inhibitors that selectively target PI3K or PI3K and mammalian target of rapamycin (mTOR) provides an opportunity to pharmacologically determine the contribution of these key signaling nodes in VEGF-A-driven tumor angiogenesis in vivo. This study used an array of microvascular imaging techniques to monitor the antivascular effects of selective class I PI3K, mTOR, or dual PI3K/ mTOR inhibitors in colorectal and prostate cancer xenograft models. Micro-computed tomography (micro-CT) angiography, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), vessel size index (VSI) MRI, and DCE ultrasound (DCE-U/S) were employed to quantitatively evaluate the vascular (structural and physiological) response to these inhibitors. GDC-0980, a dual PI3K/mTOR inhibitor, was found to reduce micro-CT angiography vascular density, while VSI MRI demonstrated a significant reduction in vessel density and an increase in mean vessel size, consistent with a loss of small functional vessels and a substantial antivascular response. DCE-MRI showed that GDC-0980 produces a strong functional response by decreasing the vascular permeability/perfusion-related parameter, Ktrans. Interestingly, comparable antivascular effects were observed for both GDC-980 and GNE-490 (a selective class I PI3K inhibitor). In addition, mTOR-selective inhibitors did not affect vascular density, suggesting that PI3K inhibition is sufficient to generate structural changes, characteristic of a robust antivascular response. This study supports the use of noninvasive microvascular imaging techniques (DCE-MRI, VSI MRI, DCE-U/S) as pharmacodynamic assays to quantitatively measure the activity of PI3K and dual PI3K/mTOR inhibitors in vivo

    Minimizing CYP2C9 Inhibition of Exposed-Pyridine NAMPT (Nicotinamide Phosphoribosyltransferase) Inhibitors

    No full text
    NAMPT inhibitors may show potential as therapeutics for oncology. Throughout our NAMPT inhibitor program, we found that exposed pyridines or related heterocyclic systems in the left-hand portion of the inhibitors are necessary pharmacophores for potent cellular NAMPT inhibition. However, when combined with a benzyl group in the center of the inhibitors, such pyridine-like moieties also led to consistent and potent inhibition of CYP2C9. In an attempt to reduce CYP2C9 inhibition, a parallel synthesis approach was used to identify central benzyl group replacements with increased Fsp3. A spirocyclic central motif was thus discovered that was combined with left-hand pyridines (or pyridine-like systems) to provide cellularly potent NAMPT inhibitors with minimal CYP2C9 inhibition. Further optimization of potency and ADME properties led to the discovery of compound <b>68</b>, a highly potent NAMPT inhibitor with outstanding efficacy in a mouse tumor xenograft model and lacking measurable CYP2C9 inhibition at the concentrations tested
    corecore