38 research outputs found

    Influence of wood species on toxicity of log-wood stove combustion aerosols: A parallel animal and air-liquid interface cell exposure study on spruce and pine smoke

    Get PDF
    Background Wood combustion emissions have been studied previously either by in vitro or in vivo models using collected particles, yet most studies have neglected gaseous compounds. Furthermore, a more accurate and holistic view of the toxicity of aerosols can be gained with parallel in vitro and in vivo studies using direct exposure methods. Moreover, modern exposure techniques such as air-liquid interface (ALI) exposures enable better assessment of the toxicity of the applied aerosols than, for example, the previous state-of-the-art submerged cell exposure techniques. Methods We used three different ALI exposure systems in parallel to study the toxicological effects of spruce and pine combustion emissions in human alveolar epithelial (A549) and murine macrophage (RAW264.7) cell lines. A whole-body mouse inhalation system was also used to expose C57BL/6 J mice to aerosol emissions. Moreover, gaseous and particulate fractions were studied separately in one of the cell exposure systems. After exposure, the cells and animals were measured for various parameters of cytotoxicity, inflammation, genotoxicity, transcriptome and proteome. Results We found that diluted (1:15) exposure pine combustion emissions (PM1 mass 7.7 ± 6.5 mg m− 3, 41 mg MJZahl^{Zahl}) contained, on average, more PM and polycyclic aromatic hydrocarbons (PAHs) than spruce (PM1 mass 4.3 ± 5.1 mg m− 3, 26 mg MJ− 1) emissions, which instead showed a higher concentration of inorganic metals in the emission aerosol. Both A549 cells and mice exposed to these emissions showed low levels of inflammation but significantly increased genotoxicity. Gaseous emission compounds produced similar genotoxicity and a higher inflammatory response than the corresponding complete combustion emission in A549 cells. Systems biology approaches supported the findings, but we detected differing responses between in vivo and in vitro experiments. Conclusions Comprehensive in vitro and in vivo exposure studies with emission characterization and systems biology approaches revealed further information on the effects of combustion aerosol toxicity than could be achieved with either method alone. Interestingly, in vitro and in vivo exposures showed the opposite order of the highest DNA damage. In vitro measurements also indicated that the gaseous fraction of emission aerosols may be more important in causing adverse toxicological effects. Combustion aerosols of different wood species result in mild but aerosol specific in vitro and in vivo effects

    Particulate matter from both heavy fuel oil and diesel fuel shipping emissions show strong biological effects on human lung cells at realistic and comparable in vitro exposure conditions

    Get PDF
    Background: Ship engine emissions are important with regard to lung and cardiovascular diseases especially in coastal regions worldwide. Known cellular responses to combustion particles include oxidative stress and inflammatory signalling. Objectives: To provide a molecular link between the chemical and physical characteristics of ship emission particles and the cellular responses they elicit and to identify potentially harmful fractions in shipping emission aerosols. Methods: Through an air-liquid interface exposure system, we exposed human lung cells under realistic in vitro conditions to exhaust fumes from a ship engine running on either common heavy fuel oil (HFO) or cleaner-burning diesel fuel (DF). Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling including isotope labelling methods to characterise the lung cell responses. Results: The HFO emissions contained high concentrations of toxic compounds such as metals and polycyclic aromatic hydrocarbon, and were higher in particle mass. These compounds were lower in DF emissions, which in turn had higher concentrations of elemental carbon (“soot”). Common cellular reactions included cellular stress responses and endocytosis. Reactions to HFO emissions were dominated by oxidative stress and inflammatory responses, whereas DF emissions induced generally a broader biological response than HFO emissions and affected essential cellular pathways such as energy metabolism, protein synthesis, and chromatin modification. Conclusions: Despite a lower content of known toxic compounds, combustion particles from the clean shipping fuel DF influenced several essential pathways of lung cell metabolism more strongly than particles from the unrefined fuel HFO. This might be attributable to a higher soot content in DF. Thus the role of diesel soot, which is a known carcinogen in acute air pollution-induced health effects should be further investigated. For the use of HFO and DF we recommend a reduction of carbonaceous soot in the ship emissions by implementation of filtration devices

    Hormone-Dependent Expression of a Steroidogenic Acute Regulatory Protein Natural Antisense Transcript in MA-10 Mouse Tumor Leydig Cells

    Get PDF
    Cholesterol transport is essential for many physiological processes, including steroidogenesis. In steroidogenic cells hormone-induced cholesterol transport is controlled by a protein complex that includes steroidogenic acute regulatory protein (StAR). Star is expressed as 3.5-, 2.8-, and 1.6-kb transcripts that differ only in their 3′-untranslated regions. Because these transcripts share the same promoter, mRNA stability may be involved in their differential regulation and expression. Recently, the identification of natural antisense transcripts (NATs) has added another level of regulation to eukaryotic gene expression. Here we identified a new NAT that is complementary to the spliced Star mRNA sequence. Using 5′ and 3′ RACE, strand-specific RT-PCR, and ribonuclease protection assays, we demonstrated that Star NAT is expressed in MA-10 Leydig cells and steroidogenic murine tissues. Furthermore, we established that human chorionic gonadotropin stimulates Star NAT expression via cAMP. Our results show that sense-antisense Star RNAs may be coordinately regulated since they are co-expressed in MA-10 cells. Overexpression of Star NAT had a differential effect on the expression of the different Star sense transcripts following cAMP stimulation. Meanwhile, the levels of StAR protein and progesterone production were downregulated in the presence of Star NAT. Our data identify antisense transcription as an additional mechanism involved in the regulation of steroid biosynthesis

    Wie lange kann ein Mensch leben, der zum Diabetes eine Lungentuberkulose bekommen hat?

    No full text

    Metabolic activation of phenanthrene by human and mouse cytochromes P450 and pharmacokinetics in CYP1A2 knockout mice.

    No full text
    In the present study V79 Chinese hamster cells were genetically engineered for stable expression of the cytochromes P450 1A1, 1A2, 1B1, and 2E1 from man and mouse to investigate species-specific differences in the regioselective metabolism and toxicity of phenanthrene (Phe), the simplest polycyclic aromatic hydrocarbon (PAN) forming a bay-region. Phe is present in various environmental samples and serves as a model substrate for PAH exposure in human biomonitoring studies. For this reason we explored metabolite profiles and metabolite-dependent cytotoxic activities in vitro. The total turnover of CYP-mediated transformation of Phe was as follows: human CYP1B1>CYP1A1>CYP1A2 >> CYP2E1, and for mouse CYP1A2 >> CYP2E1>CYP1A1. Striking species differences were seen as mouse CYP1B1 did not activate Phe at all, but human CYP1B1 exhibited a significant metabolic turnover comparable to CYP1A1 and CYP1A2. In vivo studies monitoring the whole blood Phe elimination in CYP1A2 knockout and wildtype mice after oral administration confirmed involvement of CYP1A2 in the bioactivation of Phe, but other processes must contribute also. Our data suggest that in humans not only CYP1A2 expressed solely in the liver plays a crucial role in Phe metabolism, but also constitutively expressed extrahepatic CYP1B1 in tissues such as lung, kidney or intestine. This finding will substantially improve the validity of human biomonitoring studies using individual Phe metabolites for the assessment of PAH exposure

    Differential induction of inflammatory and xenobiotic metabolizing genes by indoor and outdoor PM10.

    No full text
    Background: In classrooms high concentrations of particulate matter PM10 were measured. This study addresses the hazard of indoor particles in comparison to the better studied outdoor particles. Methods: Samples were taken from six schools during teaching hours. Genome-wide gene expression in human BEAS-2B lung epithelial cells was analyzed and verified by quantitative PCR. Polycyclic aromatic hydrocarbons (PAH), endotoxin, and cat allergen Fel d 1 were analyzed with standard methods. Enhancement of allergic reactivity by PM10 was confirmed in human primary basophils. Acceleration of human blood coagulation was determined with supernatants of PM10-exposed human peripheral blood monocytes. Results: Indoor PM10 induced SERPINB2 (involved in blood coagulation) and inflammatory genes (like CXCL6, CXCL1, IL6, IL8, all p<0.001). Outdoor PM10 induced xenobiotic metabolizing enzymes (CYP1A1, CYP1B1, TIPARP, all p<0.001). The induction of inflammatory genes by indoor PM10 was explained by endotoxin (indoor 128.5±42.2EU/mg versus outdoor 13.4±21.5EU/mg, p<0.001), the induction of CYP by outdoor PAH (indoor 8.3±4.9ng/mg versus outdoor 16.7±15.2ng/mg, p<0.01). The induction of SERPINB2 was confirmed by a more rapid human blood coagulation (p<0.05). Indoor PM10 only affected allergic reactivity from human primary basophils from cat allergic individuals. This was explained by varying Fel d 1 concentrations in indoor PM10 (p<0.001). Conclusions: Indoor PM10, compared to outdoor PM10, was 6 times higher and on an equal weight basis induced more inflammatory and allergenic reactions, and accelerated blood coagulation. Outdoor PM10 had significantly lower effects, but induced detoxifying enzymes. Therefore, preliminary interventions for the reduction of classroom PM10 seem reasonable, perhaps by intensified ventilation

    Toxicity and elemental composition of particulate matter from outdoor and indoor air of elementary schools in Munich, Germany.

    No full text
    Outdoor particulate matter (PM10) is associated with detrimental health effects. However, individual PM10 exposure occurs mostly indoors. We therefore compared the toxic effects of classroom, outdoor, and residential PM10. Indoor and outdoor PM10 was collected from six schools in Munich during teaching hours and in six homes. Particles were analyzed by scanning electron microscopy and X-ray spectroscopy (EDX). Toxicity was evaluated in human primary keratinocytes, lung epithelial cells and after metabolic activation by several human cytochromes P450.We found that PM10 concentrations during teaching hours were 5.6-times higher than outdoors (117 ± 48 lg/m3 vs. 21 ± 15 lg/m3, P < 0.001). Compared to outdoors, indoor PM contained more silicate (36% of particle number), organic (29%, probably originating from human skin), and Ca-carbonate particles (12%, probably originating from paper). Outdoor PM contained more Ca-sulfate particles (38%). Indoor PM at 6 lg/cm2 (10 lg/ml) caused toxicity in keratinocytes and in cells expressing CYP2B6 and CYP3A4. Toxicity by CYP2B6 was abolished with the reactive oxygen species scavenger N-acetylcysteine. We concluded that outdoor PM10 and indoor PM10 from homes were devoid of toxicity. Indoor PM10 was elevated, chemically different and toxicologically more active than outdoor PM10. Whether the effects translate into a significant health risk needs to be determined. Until then, we suggest better ventilation as a sensible option
    corecore