7 research outputs found

    Simple sequence repeat markers useful for sorghum downy mildew (Peronosclerospora sorghi) and related species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A recent outbreak of sorghum downy mildew in Texas has led to the discovery of both metalaxyl resistance and a new pathotype in the causal organism, <it>Peronosclerospora sorghi</it>. These observations and the difficulty in resolving among phylogenetically related downy mildew pathogens dramatically point out the need for simply scored markers in order to differentiate among isolates and species, and to study the population structure within these obligate oomycetes. Here we present the initial results from the use of a biotin capture method to discover, clone and develop PCR primers that permit the use of simple sequence repeats (microsatellites) to detect differences at the DNA level.</p> <p>Results</p> <p>Among the 55 primers pairs designed from clones from pathotype 3 of <it>P. sorghi</it>, 36 flanked microsatellite loci containing simple repeats, including 28 (55%) with dinucleotide repeats and 6 (11%) with trinucleotide repeats. A total of 22 microsatellites with CA/AC or GT/TG repeats were the most abundant (40%) and GA/AG or CT/TC types contribute 15% in our collection. When used to amplify DNA from 19 isolates from <it>P. sorghi</it>, as well as from 5 related species that cause downy mildew on other hosts, the number of different bands detected for each SSR primer pair using a LI-COR- DNA Analyzer ranged from two to eight. Successful cross-amplification for 12 primer pairs studied in detail using DNA from downy mildews that attack maize (<it>P. maydis & P. philippinensis</it>), sugar cane (<it>P. sacchari</it>), pearl millet (<it>Sclerospora graminicola</it>) and rose (<it>Peronospora sparsa</it>) indicate that the flanking regions are conserved in all these species. A total of 15 SSR amplicons unique to <it>P. philippinensis </it>(one of the potential threats to US maize production) were detected, and these have potential for development of diagnostic tests. A total of 260 alleles were obtained using 54 microsatellites primer combinations, with an average of 4.8 polymorphic markers per SSR across 34 <it>Peronosclerospora, Peronospora and Sclerospora </it>spp isolates studied. Cluster analysis by UPGMA as well as principal coordinate analysis (PCA) grouped the 34 isolates into three distinct groups (all 19 isolates of <it>Peronosclerospora sorghi </it>in cluster I, five isolates of <it>P. maydis </it>and three isolates of <it>P. sacchari </it>in cluster II and five isolates of <it>Sclerospora graminicola </it>in cluster III).</p> <p>Conclusion</p> <p>To our knowledge, this is the first attempt to extensively develop SSR markers from <it>Peronosclerospora </it>genomic DNA. The newly developed SSR markers can be readily used to distinguish isolates within several species of the oomycetes that cause downy mildew diseases. Also, microsatellite fragments likely include retrotransposon regions of DNA and these sequences can serve as useful genetic markers for strain identification, due to their degree of variability and their widespread occurrence among sorghum, maize, sugarcane, pearl millet and rose downy mildew isolates.</p

    Biomass production of herbaceous energy crops in the United States: field trial results and yield potential maps from the multiyear regional feedstock partnership

    Get PDF
    Current knowledge of yield potential and best agronomic management practices for perennial bioenergy grasses is primarily derived from small-scale and short-term studies, yet these studies inform policy at the national scale. In an effort to learn more about how bioenergy grasses perform across multiple locations and years, the U.S. Department of Energy (US DOE)/Sun Grant Initiative Regional Feedstock Partnership was initiated in 2008. The objectives of the Feedstock Partnership were to (1) provide a wide range of information for feedstock selection (species choice) and management practice options for a variety of regions and (2) develop national maps of potential feedstock yield for each of the herbaceous species evaluated. The Feedstock Partnership expands our previous understanding of the bioenergy potential of switchgrass, Miscanthus, sorghum, energycane, and prairie mixtures on Conservation Reserve Program land by conducting long-term, replicated trials of each species at diverse environments in the U.S. Trials were initiated between 2008 and 2010 and completed between 2012 and 2015 depending on species. Field-scale plots were utilized for switchgrass and Conservation Reserve Program trials to use traditional agricultural machinery. This is important as we know that the smaller scale studies often overestimated yield potential of some of these species. Insufficient vegetative propagules of energycane and Miscanthus prohibited farm-scale trials of these species. The Feedstock Partnership studies also confirmed that environmental differences across years and across sites had a large impact on biomass production. Nitrogen application had variable effects across feedstocks, but some nitrogen fertilizer generally had a positive effect. National yield potential maps were developed using PRISM-ELM for each species in the Feedstock Partnership. This manuscript, with the accompanying supplemental data, will be useful in making decisions about feedstock selection as well as agronomic practices across a wide region of the country

    Sorghum pathology and biotechnology - a fungal disease perspective: Part I. Grain mold, head smut, and ergot

    Get PDF
    Citation: Little, C., Perumal, R., Tesso, T., . . . & Magill, C. (2012). Sorghum Pathology and Biotechnology - A Fungal Disease Perspective: Part II. Anthracnose, Stalk Rot, and Downy Mildew. European Journal of Plant Science and Biotechnology, 6(1), 31-44. http://www.globalsciencebooks.info/Online/GSBOnline/images/2012/EJPSB_6(SI1)/EJPSB_6(SI1)31-44o.pdfThree common sorghum diseases, grain mold, head smut and ergot, each of which is directly related to seed production and quality are covered in this review. Each is described with respect to the causal organism or organisms, infection process, global distribution, pathogen variability and effects on grain production. In addition, screening methods for identifying resistant cultivars and the genetic basis for host resistance including molecular tags for resistance genes are described where possible

    Biomass production of herbaceous energy crops in the United States: field trial results and yield potential maps from the multiyear regional feedstock partnership

    Get PDF
    Current knowledge of yield potential and best agronomic management practices for perennial bioenergy grasses is primarily derived from small-scale and short-term studies, yet these studies inform policy at the national scale. In an effort to learn more about how bioenergy grasses perform across multiple locations and years, the U.S. Department of Energy (US DOE)/Sun Grant Initiative Regional Feedstock Partnership was initiated in 2008. The objectives of the Feedstock Partnership were to (1) provide a wide range of information for feedstock selection (species choice) and management practice options for a variety of regions and (2) develop national maps of potential feedstock yield for each of the herbaceous species evaluated. The Feedstock Partnership expands our previous understanding of the bioenergy potential of switchgrass, Miscanthus, sorghum, energycane, and prairie mixtures on Conservation Reserve Program land by conducting long-term, replicated trials of each species at diverse environments in the U.S. Trials were initiated between 2008 and 2010 and completed between 2012 and 2015 depending on species. Field-scale plots were utilized for switchgrass and Conservation Reserve Program trials to use traditional agricultural machinery. This is important as we know that the smaller scale studies often overestimated yield potential of some of these species. Insufficient vegetative propagules of energycane and Miscanthus prohibited farm-scale trials of these species. The Feedstock Partnership studies also confirmed that environmental differences across years and across sites had a large impact on biomass production. Nitrogen application had variable effects across feedstocks, but some nitrogen fertilizer generally had a positive effect. National yield potential maps were developed using PRISM-ELM for each species in the Feedstock Partnership. This manuscript, with the accompanying supplemental data, will be useful in making decisions about feedstock selection as well as agronomic practices across a wide region of the country
    corecore