11 research outputs found

    Differential Gene Expression Analysis and Clinical Correlations within Endemic Burkitt Lymphoma

    Get PDF
    Endemic Burkitt lymphoma (eBL) is the most common pediatric cancer in equatorial Africa and is associated with malaria and Epstein-Barr virus co-infections. Molecular alterations within the eBL tumor genome and transcriptome have not been adequately investigated or compared to sporadic Burkitt lymphoma (sBL). Given that eBL has distinct clinical presentations in the jaw as opposed to the abdomen which are associated with survival, we hypothesize that transcriptome sequencing (RNA-seq) and potentially underlying genetic alterations will enhance our understanding of pathogenesis. Our results compare genome-wide RNA transcript abundances between eBL tumors from children (ages 6-7 yrs) with Stage I (Jaw tumor, n=14) and Stage II (abdominal, n=24) disease from Western Kenya to previously published work analyzing sBL which present in older children residing in developed countries and that tend not to be associated with EBV. Our initial analysis confirms mutational changes with likely functional alterations in the genes ID3 and TCF3, the key regulators of oncogenic pathways implicated in BL. However, the specific mutations observed in sBL are at lower frequency within eBL cases. This work represents the first comprehensive gene expression profile analysis of different eBL tumors. Hierarchical clustering, gene ontology and pathway analysis will provide insight into pathogenesis and new targets for chemotherapy

    Integrative microRNA and mRNA deep-sequencing expression profiling in endemic Burkitt lymphoma

    Get PDF
    BACKGROUND: Burkitt lymphoma (BL) is characterized by overexpression of the c-myc oncogene, which in the vast majority of cases is a consequence of an IGH/MYC translocation. While myc is the seminal event, BL is a complex amalgam of genetic and epigenetic changes causing dysregulation of both coding and non-coding transcripts. Emerging evidence suggest that abnormal modulation of mRNA transcription via miRNAs might be a significant factor in lymphomagenesis. However, the alterations in these miRNAs and their correlations to their putative mRNA targets have not been extensively studied relative to normal germinal center (GC) B cells. METHODS: Using more sensitive and specific transcriptome deep sequencing, we compared previously published small miRNA and long mRNA of a set of GC B cells and eBL tumors. MiRWalk2.0 was used to identify the validated target genes for the deregulated miRNAs, which would be important for understanding the regulatory networks associated with eBL development. RESULTS: We found 211 differentially expressed (DE) genes (79 upregulated and 132 downregulated) and 49 DE miRNAs (22 up-regulated and 27 down-regulated). Gene Set enrichment analysis identified the enrichment of a set of MYC regulated genes. Network propagation-based method and correlated miRNA-mRNA expression analysis identified dysregulated miRNAs, including miR-17~95 cluster members and their target genes, which have diverse oncogenic properties to be critical to eBL lymphomagenesis. Central to all these findings, we observed the downregulation of ATM and NLK genes, which represent important regulators in response to DNA damage in eBL tumor cells. These tumor suppressors were targeted by multiple upregulated miRNAs (miR-19b-3p, miR-26a-5p, miR-30b-5p, miR-92a-5p and miR-27b-3p) which could account for their aberrant expression in eBL. CONCLUSION: Combined loss of p53 induction and function due to miRNA-mediated regulation of ATM and NLK, together with the upregulation of TFAP4, may be a central role for human miRNAs in eBL oncogenesis. This facilitates survival of eBL tumor cells with the IGH/MYC chromosomal translocation and promotes MYC-induced cell cycle progression, initiating eBL lymphomagenesis. This characterization of miRNA-mRNA interactions in eBL relative to GC B cells provides new insights on miRNA-mediated transcript regulation in eBL, which are potentially useful for new improved therapeutic strategies

    Endemic Burkitt lymphoma avatar mouse models for exploring inter-patient tumor variation and testing targeted therapies

    Get PDF
    Endemic Burkitt lymphoma (BL) is a childhood cancer in sub-Saharan Africa characterized by Epstein-Barr virus and malaria-associated aberrant B-cell activation and MYC chromosomal translocation. Survival rates hover at 50% after conventional chemotherapies; therefore, clinically relevant models are necessary to test additional therapies. Hence, we established five patient-derived BL tumor cell lines and corresponding NSG-BL avatar mouse models. Transcriptomics confirmed that our BL lines maintained fidelity from patient tumors to NSG-BL tumors. However, we found significant variation in tumor growth and survival among NSG-BL avatars and in Epstein-Barr virus protein expression patterns. We tested rituximab responsiveness and found one NSG-BL model exhibiting direct sensitivity, characterized by apoptotic gene expression counterbalanced by unfolded protein response and mTOR pro-survival pathways. In rituximab-unresponsive tumors, we observed an IFN-α signature confirmed by the expression of IRF7 and ISG15. Our results demonstrate significant inter-patient tumor variation and heterogeneity, and that contemporary patient-derived BL cell lines and NSG-BL avatars are feasible tools to guide new therapeutic strategies and improve outcomes for these children

    A New Hope for CD56negCD16pos NK Cells as Unconventional Cytotoxic Mediators: An Adaptation to Chronic Diseases

    Get PDF
    Natural Killer (NK) cells play an essential role in antiviral and anti-tumoral immune responses. In peripheral blood, NK cells are commonly classified into two major subsets: CD56brightCD16neg and CD56dimCD16pos despite the characterization of a CD56negCD16pos subset 25 years ago. Since then, several studies have described the prevalence of an CD56negCD16pos NK cell subset in viral non-controllers as the basis for their NK cell dysfunction. However, the mechanistic basis for their cytotoxic impairment is unclear. Recently, using a strict flow cytometry gating strategy to exclude monocytes, we reported an accumulation of CD56negCD16pos NK cells in Plasmodium falciparum malaria-exposed children and pediatric cancer patients diagnosed with endemic Burkitt lymphoma (eBL). Here, we use live-sorted cells, histological staining, bulk RNA-sequencing and flow cytometry to confirm that this CD56negCD16pos NK cell subset has the same morphological features as the other NK cell subsets and a similar transcriptional profile compared to CD56dimCD16pos NK cells with only 120 genes differentially expressed (fold change of 1.5, p < 0.01 and FDR<0.05) out of 9235 transcripts. CD56negCD16pos NK cells have a distinct profile with significantly higher expression of MPEG1 (perforin 2), FCGR3B (CD16b), FCGR2A, and FCGR2B (CD32A and B) as well as CD6, CD84, HLA-DR, LILRB1/2, and PDCD1 (PD-1), whereas Interleukin 18 (IL18) receptor genes (IL18RAP and IL18R1), cytotoxic genes such as KLRF1 (NKp80) and NCR1 (NKp46), and inhibitory HAVCR2 (TIM-3) are significantly down-regulated compared to CD56dimCD16pos NK cells. Together, these data confirm that CD56negCD16pos cells are legitimate NK cells, yet their transcriptional and protein expression profiles suggest their cytotoxic potential is mediated by pathways reliant on antibodies such as antibody-dependent cell cytotoxicity (ADCC), antibody-dependent respiratory burst (ADRB), and enhanced by complement receptor 3 (CR3) and FAS/FASL interaction. Our findings support the premise that chronic diseases induce NK cell modifications that circumvent proinflammatory mediators involved in direct cytotoxicity. Therefore, individuals with such altered NK cell profiles may respond differently to NK-mediated immunotherapies, infections or vaccines depending on which cytotoxic mechanisms are being engaged

    Distinctive Kaposi Sarcoma-Associated Herpesvirus Serological Profile during Acute Plasmodium falciparum Malaria Episodes

    Get PDF
    The seroprevalence of Kaposi sarcoma-associated herpesvirus (KSHV) and the incidence of endemic Kaposi sarcoma (KS) overlap with regions of malaria endemicity in sub-Saharan Africa. Multiple studies have shown an increased risk of KSHV seroconversion in children from high malaria compared to low malaria regions; however, the impact of acute episodes of Plasmodium falciparum (P. falciparum) malaria on KSHV's biphasic life cycle and lytic reactivation has not been determined. Here, we examined KSHV serological profiles and viral loads in 134 children with acute malaria and 221 healthy children from high malaria regions in Kisumu, as well as 77 healthy children from low malaria regions in Nandi. We assayed KSHV, Epstein-Barr virus (EBV), and P. falciparum malaria antibody responses in these three by multiplexed Luminex assay. We confirmed that KSHV seroprevalence was significantly associated with malaria endemicity (OR = 1.95, 1.18-3.24 95% CI, p = 0.01) with 71-77% seropositivity in high-malaria (Kisumu) compared to 28% in low-malaria (Nandi) regions. Furthermore, KSHV serological profiles during acute malaria episodes were distinct from age-matched non-malaria-infected children from the same region. Paired IgG levels also varied after malaria treatment, with significantly higher anti-ORF59 at day 0 but elevated ORF38, ORF73, and K8.1 at day 3. Acute malaria episodes is characterized by perturbation of KSHV latency in seropositive children, providing further evidence that malaria endemicity contributes to the observed increase in endemic KS incidence in sub-Saharan Africa

    Comprehensive Transcriptome and Mutational Profiling of Endemic Burkitt Lymphoma Reveals EBV Type-Specific Differences.

    No full text
    Endemic Burkitt lymphoma (eBL) is the most common pediatric cancer in malaria-endemic equatorial Africa and nearly always contains Epstein-Barr virus (EBV), unlike sporadic Burkitt lymphoma (sBL) that occurs with a lower incidence in developed countries. Given these differences and the variable clinical presentation and outcomes, we sought to further understand pathogenesis by investigating transcriptomes using RNA sequencing (RNAseq) from multiple primary eBL tumors compared with sBL tumors. Within eBL tumors, minimal expression differences were found based on: anatomical presentation site, in-hospital survival rates, and EBV genome type, suggesting that eBL tumors are homogeneous without marked subtypes. The outstanding difference detected using surrogate variable analysis was the significantly decreased expression of key genes in the immunoproteasome complex (PSMB9/β1i, PSMB10/β2i, PSMB8/β5i, and PSME2/PA28β) in eBL tumors carrying type 2 EBV compared with type 1 EBV. Second, in comparison with previously published pediatric sBL specimens, the majority of the expression and pathway differences was related to the PTEN/PI3K/mTOR signaling pathway and was correlated most strongly with EBV status rather than geographic designation. Third, common mutations were observed significantly less frequently in eBL tumors harboring EBV type 1, with mutation frequencies similar between tumors with EBV type 2 and without EBV. In addition to the previously reported genes, a set of new genes mutated in BL, including TFAP4, MSH6, PRRC2C, BCL7A, FOXO1, PLCG2, PRKDC, RAD50, and RPRD2, were identified. Overall, these data establish that EBV, particularly EBV type 1, supports BL oncogenesis, alleviating the need for certain driver mutations in the human genome. IMPLICATIONS: Genomic and mutational analyses of Burkitt lymphoma tumors identify key differences based on viral content and clinical outcomes suggesting new avenues for the development of prognostic molecular biomarkers and therapeutic interventions

    Human and Epstein-Barr Virus miRNA Profiling as Predictive Biomarkers for Endemic Burkitt Lymphoma

    Get PDF
    Endemic Burkitt lymphoma (eBL) is an aggressive B cell lymphoma and is associated with Epstein-Barr virus (EBV) and Plasmodium falciparum malaria co-infections. Central to BL oncogenesis is the over-expression of the MYC proto-oncogene which is caused by a translocation of an Ig enhancer in approximation to the myc gene. While whole genome/transcriptome sequencing methods have been used to define driver mutations and transcriptional dysregulation, microRNA (miRNA) dysregulation and differential expression has yet to be fully characterized. We hypothesized that both human and EBV miRNAs contribute to eBL clinical presentation, disease progression, and poor outcomes. Using sensitive and precise deep sequencing, we identified miRNAs from 17 Kenyan eBL patient tumor samples and delineated the complement of both host and EBV miRNAs. One human miRNA, hsa-miR-10a-5p was found to be differentially expressed (DE), being down-regulated in jaw tumors relative to abdominal and in non-survivors compared to survivors. We also examined EBV miRNAs, which made up 2.7% of the miRNA composition in the eBL samples. However, we did not find any significant associations regarding initial patient outcome or anatomical presentation. Gene ontology analysis and pathway enrichment of previously validated targets of miR-10a-5p suggest that it can promote tumor cell survival as well as aid in evasion of apoptosis. To examine miR-10a-5p regulatory effect on gene expression in eBL, we performed a pairwise correlation coefficient analysis on the expression levels of all its validated targets. We found a significant enrichment of correlated target genes consistent with miR-10a-5p impacting expression. The functions of genes and their correlation fit with multiple target genes impacting tumor resilience. The observed downregulation of miR-10a and associated genes suggests a role for miRNA in eBL patient outcomes and has potential as a predictive biomarker that warrants further investigation

    Interleukin-6 and interleukin-10 gene promoter polymorphisms and risk of endemic burkitt lymphoma

    No full text
    Overexpression of interleukin-6 (IL-6) and IL-10 in endemic Burkitt lymphoma (eBL) may facilitate tumorigenesis by providing a permissive cytokine milieu. Promoter polymorphisms influence interindividual differences in cytokine production. We hypothesized that children genetically predisposed for elevated cytokine levels may be more susceptible to eBL. Using case-control samples from western Kenya consisting of 117 eBL cases and 88 ethnically matched healthy controls, we tested for the association between eBL risk and IL-10 (rs1800896, rs1800871, and rs1800872) and IL-6 (rs1800795) promoter single nucleotide polymorphisms (SNPs) as well as IL-10 promoter haplotypes. In addition, the association between these variants and Epstein Barr Virus (EBV) load was examined. Results showed that selected IL-10 and IL-6 promoter SNPs and IL-10 promoter haplotypes were not associated with risk eBL or EBV levels in EBV-seropositive children. Findings from this study reveal that common variants within the IL-10 and IL-6 promoters do not independently increase eBL risk in this vulnerable population

    Kaposi Sarcoma-Associated Herpesvirus Infection and Endemic Burkitt Lymphoma

    Full text link
    Background: Endemic Burkitt lymphoma (eBL) is associated with Epstein-Barr virus (EBV) and Plasmodium falciparum malaria coinfections. However, the role of Kaposi sarcoma-associated herpesvirus (KSHV), also endemic in Africa, has not been evaluated as a cofactor in eBL pathogenesis. Methods: Multiplexed seroprofiles for EBV, malaria, and KSHV were generated for 266 eBL patients, 78 non-eBL cancers, and 202 healthy children. KSHV and EBV loads were quantified by PCR. Results: KSHV seroprevalence did not differ by study group but was associated with age. Seropositivity, defined by K8.1/LANA or in combination with 5 other KSHV antigens (ORF59, ORF65, ORF61, ORF38, and K5) was associated with antimalarial antibody levels to AMA1 (odds ratio [OR], 2.41, P < .001; OR, 2.07, P < .001) and MSP1 (OR, 2.41, P = .0006; OR, 5.78, P < .001), respectively. KSHV loads did not correlate with antibody levels nor differ across groups but were significantly lower in children with detectable EBV viremia (P = .014). Conclusions: Although KSHV-EBV dual infection does not increase eBL risk, EBV appears to suppress reactivation of KSHV while malaria exposure is associated with KSHV infection and/or reactivation. Both EBV and malaria should, therefore, be considered as potential effect modifiers for KSHV-associated cancers in sub-Saharan Africa. Keywords: Plasmodium falciparum malaria; Epstein-Barr virus; Kaposi sarcoma-associated herpesvirus; Kenya; endemic Burkitt lymphoma

    Distinctive Kaposi Sarcoma-Associated Herpesvirus Serological Profile during Acute <i>Plasmodium falciparum</i> Malaria Episodes

    No full text
    The seroprevalence of Kaposi sarcoma-associated herpesvirus (KSHV) and the incidence of endemic Kaposi sarcoma (KS) overlap with regions of malaria endemicity in sub-Saharan Africa. Multiple studies have shown an increased risk of KSHV seroconversion in children from high malaria compared to low malaria regions; however, the impact of acute episodes of Plasmodium falciparum (P. falciparum) malaria on KSHV’s biphasic life cycle and lytic reactivation has not been determined. Here, we examined KSHV serological profiles and viral loads in 134 children with acute malaria and 221 healthy children from high malaria regions in Kisumu, as well as 77 healthy children from low malaria regions in Nandi. We assayed KSHV, Epstein–Barr virus (EBV), and P. falciparum malaria antibody responses in these three by multiplexed Luminex assay. We confirmed that KSHV seroprevalence was significantly associated with malaria endemicity (OR = 1.95, 1.18–3.24 95% CI, p = 0.01) with 71–77% seropositivity in high-malaria (Kisumu) compared to 28% in low-malaria (Nandi) regions. Furthermore, KSHV serological profiles during acute malaria episodes were distinct from age-matched non-malaria-infected children from the same region. Paired IgG levels also varied after malaria treatment, with significantly higher anti-ORF59 at day 0 but elevated ORF38, ORF73, and K8.1 at day 3. Acute malaria episodes is characterized by perturbation of KSHV latency in seropositive children, providing further evidence that malaria endemicity contributes to the observed increase in endemic KS incidence in sub-Saharan Africa
    corecore