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Abstract: The seroprevalence of Kaposi sarcoma-associated herpesvirus (KSHV) and the incidence

of endemic Kaposi sarcoma (KS) overlap with regions of malaria endemicity in sub-Saharan Africa.

Multiple studies have shown an increased risk of KSHV seroconversion in children from high malaria

compared to low malaria regions; however, the impact of acute episodes of Plasmodium falciparum

(P. falciparum) malaria on KSHV’s biphasic life cycle and lytic reactivation has not been determined.

Here, we examined KSHV serological profiles and viral loads in 134 children with acute malaria

and 221 healthy children from high malaria regions in Kisumu, as well as 77 healthy children

from low malaria regions in Nandi. We assayed KSHV, Epstein–Barr virus (EBV), and P. falciparum

malaria antibody responses in these three by multiplexed Luminex assay. We confirmed that KSHV

seroprevalence was significantly associated with malaria endemicity (OR = 1.95, 1.18–3.24 95% CI,

p = 0.01) with 71–77% seropositivity in high-malaria (Kisumu) compared to 28% in low-malaria

(Nandi) regions. Furthermore, KSHV serological profiles during acute malaria episodes were distinct

from age-matched non-malaria-infected children from the same region. Paired IgG levels also varied

after malaria treatment, with significantly higher anti-ORF59 at day 0 but elevated ORF38, ORF73,

and K8.1 at day 3. Acute malaria episodes is characterized by perturbation of KSHV latency in

seropositive children, providing further evidence that malaria endemicity contributes to the observed

increase in endemic KS incidence in sub-Saharan Africa.

Keywords: Kaposi sarcoma-associated herpesvirus; Epstein–Barr virus; acute malaria infection;

endemic Kaposi sarcoma; sub-Saharan Africa; lytic replication; Kenya

1. Introduction

Kaposi sarcoma-associated herpesvirus (KSHV) is an oncovirus that causes Kaposi
sarcoma (KS) and other diseases, including primary effusion lymphoma and a form of
multicentric Castleman disease (KSHV-MCD) [1]. The seroprevalence of KSHV is unac-
countably high in malaria-endemic areas of sub-Saharan Africa [2,3]. Studies from these
regions have reported a significant correlation between KSHV- and malaria-specific an-
tibodies in both children and adults [4–8]. Prior to the HIV/AIDS epidemic, endemic
Kaposi sarcoma (KS) incidence was estimated at 6 per 100,000 person-year in East Africa,
including Uganda, Tanzania, and Zaire (now the Democratic Republic of Congo) compared
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to an incidence of 0.5–1.5 per 100,000 person-year in north and south African countries [9].
Though multiple theories have been proposed to explain the strong geographic overlap
in malaria endemicity, KSHV seroprevalence, and endemic KS incidence in sub-Saharan
Africa, including quinine-linked “oncoweed” [10] and “oncodrug” hypotheses [11], they
are inconsistent with stable KSHV seroprevalence in malaria-endemic regions years after
the replacement of quinine as an anti-malarial. While previous studies have implicated
Plasmodium falciparum (P. falciparum) malaria infections with inducing KSHV lytic replica-
tion and by extension, the strong geographical clustering of malaria endemicity with KSHV
seroprevalence, changes in KSHV serological profiles during acute malaria episodes have
not yet been studied.

By comparison, the interactions between P. falciparum malaria and another herpesvirus,
Epstein–Barr virus (EBV) in the etiology of endemic Burkitt lymphoma (eBL) have been
extensively described [12–14]. Several studies have shown that persistent replicative blood-
stage malaria infections in children are associated with transient activation of EBV from
latency to a viremic lytic state, higher steady-state viral loads, and an increased risk of
eBL development [14–16]. Cognate surface receptors in EBV-infected memory B-cells
interact with the cysteine-rich inter-domain region 1 alpha (CIDR1A) domain, specifically
of P. falciparum erythrocyte membrane protein 1 (Pf EMP1) on parasitized red blood cells
(pRBCs). This direct interaction stimulates B cell proliferation and EBV reactivation [15–19].
Though less studied, a similar model involving interactions between CD36-expressing
KSHV-infected B cells and the Pf EMP1 CIDR1Adomain has been implicated in KSHV
lytic replication [16]. Conant et al. (2013) propose a model in which such an interaction
initiates a transcriptional cascade, culminating in the sequential transcriptional activation of
immediate early (IE), delayed early (DE) and structural KSHV lytic cycle genes [16]. While
this proposed model provides a possible link between malaria, KSHV lytic replication and
endemic KS distribution, the extent of this relationship remains largely unexplored in at-risk
populations [5,8,20]. Though acute malaria infection perturbs EBV latency, characterized
by the initiation of a lytic transcriptional program and increased viremia, the effects of
acute malaria episodes on KSHV lytic replication have yet to be determined.

In this study, we evaluated KSHV serological patterns indicative of lytic replication in
children during an episode of acute malaria and compared them to two separate groups
of non-malaria-infected Kenyan children. We demonstrate that acute malaria subjects
exhibit a distinct pattern of elevated antibodies against KSHV lytic antigens, indicating that
malaria infection induces KSHV reactivation.

2. Results

2.1. Characteristics of Study Participants

To determine the seroprevalence of KSHV in malaria-endemic areas, we examined
acute malaria-infected and healthy subjects from a region with high incidence of malaria
(Kisumu) as well as healthy subjects from a region with low incidence of malaria (Nandi).
A total of 134 children (median age 4.8, IQR; 3.4–6.9) experiencing an episode of uncompli-
cated acute P. falciparum malaria from Kisumu (A-KSM) were compared to 221 (median
age 5.6, IQR; 4.5–8.7) healthy children from Kisumu (H-KSM), and 77 (median age 5.3,
IQR; 3.3–5.5) healthy children from Nandi (H-NDI). As expected, KSHV seroprevalence
correlated with levels of malaria transmission, with significantly higher seroprevalence
in high-malaria Kisumu children compared to low-malaria Nandi children (p < 0.0001 by
Pearson’s Chi-squared test; Table 1).
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Table 1. Demographic characteristics of study participants.

Malaria-Infected
Children

(A-KSM; n = 134)

Healthy
Children-KSM

(H-KSM; n = 221)

Healthy
Children-Nandi
(H-NDI; n = 77)

p-Value

Female, n (%) 63 (47%) 109 (49%) 38 (49%) -
Age (years),

Median (Range)
4.8 (1.7–9.9) 5.6 (1.3–15.8) 5.3 (0.5–16.6) -

KSHV seropositive
(n, %)

95 (71%) 171 (77%) 21 (28%) <0.001 *

Abbreviations: KSHV, Kaposi sarcoma-associated herpesvirus; A-KSM-D0, acute Kisumu Day 0; A-KSM-D3, acute
Kisumu Day 3; H-KSM, healthy Kisumu; H-NDI, healthy Nandi. * Statistical analysis performed by Pearson’s
Chi-squared test for KSHV seropositivity count data.

2.2. Acute P. falciparum Malaria Is Characterized by Distinct Serological Profiles in KSHV
Seropositive Children

We next compared the serological profiles of the three cohorts and found that IgG
antibodies against malaria antigens, MSP1 and AMA1, were significantly elevated in
KSHV seropositive compared to seronegative children (Figure 1a), a pattern supported by
additional multivariate regression analysis of seropositivity determinants when controlling
for the confounding effects of participants’ age and gender (Figure 1b). Significantly higher
odds of KSHV seropositivity were observed in children from the high-malaria region of
Kisumu (H-KSM OR = 1.95, 1.18–3.24, 95% CI, p = 0.01 and A-KSM OR = 1.95, 1.19–3.35,
95% CI, p = 0.01) and in children with high P. falciparum malaria anti-MSP1 IgG antibodies
(OR = 1.70, 1.07–2.72 95% CI, p = 0.025).

 

–

–

Figure 1. Distinct KSHV serological signature during acute malaria episodes. (a) Plot of anti-malarial

IgG antibodies in KSHV seropositive relative to seronegative children from western Kenya. Significant

differences are based on the Wilcoxon rank-sum test with Benjamini–Hochberg correction for multiple

comparisons where appropriate (ns: p > 0.05; *** p < 0.001). Boxplots include the sample medians,

minimum/maximum values, and first/third quartiles. (b) Forest plot of multivariate logistic regression
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analysis of determinants of KSHV seropositivity in the three study populations. (c) Study participants

are clustered based on their anti-KSHV IgG antibodies into malaria-endemic vs. sporadic regions

(PC 1) and acute malaria vs. healthy children from Kisumu (PC 2). Outer boxplots and whiskers show

distribution of KSHV IgGs in A-KSM and H-KSM compared to H-NDI KSHV IgG combinations along

both principal component 1 (PC1) and PC2. Abbreviations: A-KSM, children with acute malaria from

Kisumu; H-KSM, healthy children from Kisumu; H-NDI, healthy children from Nandi; VCA, EBV

Viral Capsid Antigen; EBNA1, Epstein–Barr nuclear antigen 1; MSP1, P. falciparum malaria Merozoite

surface protein-1; AMA1, P. falciparum malaria Apical Membrane Antigen-1.

To determine the effects of acute malaria infections on KSHV serological patterns, we
first projected individual participants from the three study populations (independent of
KSHV sero-status) into a 2-D principal component analysis (PCA) based on previously
validated IgG antibody levels to seven KSHV antigens (Figure 1c). A combination of five
out of these seven KSHV antigens more accurately defines seropositivity [8]. The first
principal component (Dimension 1) clusters participants into two regions based on patterns
of malaria transmission intensity: high (A-KSM and H-KSM) and low (H-NDI). Principal
component 2 (PC2) explained 13.5% of the differences, with KSHV lytic antigens ORF59,
K5, ORF61, and ORF38 presenting with a distinct pattern in A-KSM at day 0 (before the
start of anti-malarial treatment). Overall, both the PCA and multivariate regression analysis
confirmed the previously described geographical overlap between malaria incidence and
KSHV seroprevalence.

2.3. KSHV Lytic Antigens Are Increased in Patients with Acute Malaria

To determine the specific KSHV antigens that are elevated during acute malaria, we
compared antibody levels to these antigens in the three cohorts. Consistent with our PCA
characterization, we identified distinct antibody signatures for the KSHV antigens ORF59,
K8.1, ORF38, and ORF73 across the three study populations. IgG antibodies against ORF73
were significantly higher in healthy subjects compared to A-KSM-D0 subjects. K8.1 IgG
antibodies were also slightly elevated in H-KSM while ORF59 IgG was slightly elevated in
A-KSM-D0 subjects compared to H-KSM (Figure 2a). In contrast, anti-ORF38 IgGs were
significantly elevated in acute malaria patients from Kisumu at day 3 compared to healthy
children from the same region (Figure 2a). Delayed early antigens such as K5, ORF61, and
ORF65 had comparable IgG antibody levels in the three study populations (Figure S1).
As a comparator, we examined EBV, which is known to become reactivated during acute
malaria. We found EBV anti-VCA but not EBNA1 IgG levels were significantly higher
in A-KSM children at day 0 compared to both H-KSM and H-NDI children (Figure 2b)
and showed a modest positive correlation with IgG against KSHV antigens, including K5,
ORF38, ORF59, and ORF61 (Figure S2). Altogether, these results demonstrate that acute
malaria episodes perturb KSHV latency, leading to elevated IgG antibodies against KSHV
lytic antigens.
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Figure 2. Increased IgG antibodies against KSHV lytic antigens during acute malaria episodes (a) Log-

scale comparison of KSHV IgG antibodies against early (ORF59), late (K8.1) lytic, latency-associated

(ORF73) antigens, and structural tegument protein ORF38 in A-KSM-D0 (cyan), H-KSM-D0 (yellow),

H-KSM-D3 (red) and H-NDI (blue) (* p < 0.05; *** p < 0.001; **** p < 0.0001, ns: p > 0.05) (b) Log-scale

comparison of EBV IgG antibodies against VCA during acute malaria infection. Significant differences

are based on the Wilcoxon rank-sum test with Benjamini–Hochberg (BH) correction for multiple

comparisons where appropriate (* p < 0.05; *** p < 0.001; **** p < 0.0001, ns: p > 0.05). Boxplots include

the sample medians, minimum/maximum values and first/third quartiles. Abbreviations: KSHV,

Kaposi sarcoma-associated herpesvirus; A-KSM-D0, acute Kisumu Day 0; A-KSM-D3, acute Kisumu

Day 3; H-KSM, healthy Kisumu; H-NDI, healthy Nandi; VCA, Viral Capsid Antigen.

2.4. Pairwise Comparison of Antibody Responses Reveals Distinct IgG and IgM Antibodies to
KSHV Antigens during Acute Malaria Episodes

To further assess the effects of acute malaria episodes on KSHV latency, we performed
a pairwise comparison of anti-KSHV IgG and IgM antibodies in pre- (A-KSM-D0) and post-
treatment samples (A-KSM-D3). From the pairwise comparisons, IgG antibodies against
ORF38 (p < 0.0001), K8.1 (p < 0.0001), and ORF73 (p = 0.0002) antigens were significantly
higher at day 3 compared to day 0 (Wilcoxon matched-pairs test, Figure 3a). Consistent
with this IgG pattern, anti-KSHV IgM were significantly elevated in A-KSM at day 3
compared to paired A-KSM samples at day 0 (Figure 3b). To confirm if the serological
pattern is indicative of ongoing lytic reactivation, we assayed both KSHV and EBV loads at
both recruitment and last day of malaria treatment. In the acute malaria-infected cohort,
KSHV load was undetectable both in whole cell pellets and cell-free plasma using droplet
digital PCR (ddPCR). This result was not due to an inability to detect KSHV by the assay,
as KSHV+ controls included in each plate had a consistent range of viral copies/µL of
DNA (Tables S1 and S2). In contrast to KSHV, the EBV load was significantly elevated
in acute malaria relative to healthy Kisumu children (Figure 3c), independent of KSHV
seropositivity (Figure S3, left panel), which was consistent with previous studies from
the same region [21,22]. Though malaria parasite load at recruitment was independent of
KSHV seropositivity (Figure S3, right panel), we observed a modest relationship between
parasitemia and IgM antibodies against lytic KSHV antigens. At day 0, IgM antibodies
against K5, ORF61, and ORF38 antigens are therefore positively correlated with parasite
density (Figure 3d).
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Figure 3. Variation in paired KSHV antibody responses during acute malaria episodes. (a) Paired

comparisons of log-scale IgG antibodies against early (ORF59), late lytic (ORF38 and K8.1), and

latency-associated antigen, ORF73 in KSHV-seropositive A-KSM children at Day 0 and 3 of malaria

infection (Wilcoxon matched-pairs signed rank test; *** p < 0.001; **** p < 0.0001, ns: p > 0.05).

(b) Paired comparison of log-scale IgM antibodies against 7 KSHV antigens at Days 0 and 3 of

acute malaria infection (Wilcoxon matched pairs signed rank test with BH correction for multiple

comparisons; ** p < 0.01; *** p < 0.001; **** p < 0.0001). (c) Comparison of EBV load in acute

malaria-infected and healthy children from Kisumu (Wilcoxon rank-sum test, ** p < 0.01) Boxplots

include the sample medians, minimum/maximum values, and first/third quartiles. (d) Spearman

Correlation (r) test of parasite density and IgM antibodies against KSHV ORF61, K5 and ORF38

antigens. Abbreviations: KSHV, Kaposi sarcoma-associated herpesvirus; EBV, Epstein–Barr virus.

3. Discussion

In this study, we report the first detailed comparison of a panel of KSHV antibodies in
children with acute P. falciparum malaria compared to non-malaria-infected healthy children
from high (Kisumu) and low (Nandi) malaria transmission regions in Kenya. Our results
show a distinct KSHV serological profile during an episode of malaria, reminiscent of KSHV
DNA replication, followed by the release of structural virion proteins as well as the KSHV
latency genes during virion-induced cell destruction. Our observation is consistent with
a recently proposed model of molecular interaction between pRBCs and KSHV-infected
memory B-cells [16]. Using paired analysis, we show that IgG responses to the virion
proteins ORF38 (tegument) and K8.1, as well as latency-associated nuclear antigen (LANA
encoded by ORF73 and released during host cell destruction), were significantly elevated
by the third day as acute malaria episode resolved during the 3-day course of anti-malarial
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treatment. Though KSHV DNA was undetected in peripheral blood, the serological profile
points to possible lytic reactivation during acute malaria episodes. This is consistent with
studies that have reported a higher risk of KSHV seroconversion with an increasing malaria
annualized rate [6].

During acute malaria episodes, previous studies have shown that EBV-specific T cells
fail to control EBV-infected B cells, leading to abnormal proliferation, initiation of lytic
reactivation, and elevated viral loads [15,23,24]. In our study, A-KSM children presented
with significantly higher EBV loads and stronger anti-VCA IgG antibody responses, sup-
porting the existing evidence of the effects of malaria episodes on EBV kinetics. Though
studies on how malaria episodes impact KSHV control are lacking, our results show that
acute malaria episodes similarly disrupt KSHV latency. Even in the absence of KSHV load
data, the variable serological patterns for K8.1 and ORF38 in A-KSM relative to H-KSM are
consistent with perturbation of latency. Significantly higher IgG antibody levels against
K8.1 in H-KSM vs. A-KSM-D0 but not A-KSM-D3 could also reflect different stages of lytic
replication over the course of a malaria infection undergoing treatment. Though elevated
levels of K8.1 in healthy vs. acute malaria children is inconsistent with lytic replication
patterns, this could be reflective of high reactivity of K8.1 peptides relative to other KSHV
antigens [25–27]. How this pattern would progress for undiagnosed and, thus, untreated
malaria infections remain unknown. However, the same pattern is also evident in IgG
antibodies against ORF38; comparable in A-KSM-D0 vs. H-KSM but significantly higher in
A-KSM-D3 vs. A-KSM-D0 and H-KSM. Both K8.1 and ORF38 genes are expressed 48–72 h
post-initiation of replication [25–27]. The increased levels of KSHV-specific IgM antibod-
ies at day 3 in paired samples are also consistent with atypical memory B-cell responses
previously associated with persistent exposure to intense malaria transmission [28]. This
can also be skewed by polyclonal activation of B cells during acute malaria episodes [29],
evident from the positive correlation between anti-K5, ORF61, and ORF38 IgG antibodies
and malaria parasite density. Thus, additional studies designed to characterize tempo-
ral KSHV transcriptomics in peripheral blood mononuclear cells (PBMCs) are needed to
comprehensively define the effects of acute malaria episodes on KSHV lytic reactivation.
Such studies may overcome the key limitation here; the failure to detect KSHV load in
longitudinal whole blood and plasma samples within our study population. As different
genes are amplified for KSHV detection, including ORF26 [8], ORF73 [30] and K6 [31], it is
possible that the sensitivity of ORF26 (a late lytic protein) is low and the other viral genes
could be explored to increase the sensitivity of KSHV detection. Alternatively, the design
of this study and use of DBS-extracted DNA for viral load quantification may have limited
the sensitivity of KSHV DNA detection. Nevertheless, malaria seems to drive both EBV
and KSHV lytic replication, and future studies are needed to characterize if the reactivated
cellular reservoirs of these two viruses overlap in pediatric and adult infections, as would
be suggested by recent studies on EBV co-infection supporting KSHV persistence [32–37]

In conclusion, this study provides evidence that acute malaria infections initiate a
transition through KSHV lytic replication stages characterized by a serological pattern
reflective of the expression of early intermediate, delayed early, and tegument lytic KSHV
proteins. Thus, it also provides further evidence that malaria seems to be reactivating
KSHV replication, possibly thereby contributing to the increased incidence of endemic
KS in the region. Though the average decline in KS incidence is largely associated with a
reduction in HIV/AIDS incidence and the rollout of antiretroviral therapy [38], the impacts
of effective malaria control programs within sub-Saharan Africa on this downward trend
cannot be ignored.

4. Materials and Methods

4.1. Study Area, Participants, and Ethical Approval

Children presenting with acute uncomplicated P. falciparum malaria (referred to as
acute Kisumu; A-KSM) were sampled from a larger multicenter study designed to evaluate
the efficacy of artemether-lumefantrine (AL) in Ahero, Kisumu County, Kenya between
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September 2016 and July 2018. Participants were included in the study if they presented
with at least 500 parasites per 200 white blood cells (WBC) by microscopy and admitted
to Ahero sub-county hospital clinical trial site in Kisumu County for directly observed
therapy consisting of 6 doses over 3 days, following the current Ministry of Health (Kenya)
guidelines [39]. Whole blood samples for serology, malaria parasitemia, and viral loads
were collected at day 0 (A-KSM-D0) prior to treatment initiation and at day 3 (A-KSM-D3)
of treatment with AL. Additional control cohorts of healthy children were recruited from
Chulaimbo, Kisumu County (healthy Kisumu; H-KSM) and from Mosoriot, Nandi County
(healthy Nandi; H-NDI) between 2014 and 2018. Chulaimbo and Ahero sub-counties within
Kisumu County are situated 35 km west and 20 km east of Kisumu city, respectively, and
both are characterized by perennial high malaria transmission. Conversely, Mosoriot, in
Nandi County, is a region with low and seasonal malaria [40]. For inclusion in this study,
all participants were HIV-negative and born of HIV-negative mothers. For the healthy
control group, only children with undetectable malaria parasites by both microscopy and
qPCR were included.

4.2. Antibody Serology Assay

Using multiplexed bead-based assay, we measured the levels of IgG and IgM antibod-
ies to 7 previously described KSHV antigens [8,41] and antibodies against EBV (EBNA1
and VCA) and malaria (AMA1 and MSP1) antigens in A-KSM-D0, A-KSM-D3, H-KSM,
and H-NDI children. Based on previously described protocols [8,42], Bio-plex COOH
carboxylated beads were coupled to recombinant KSHV open reading frames (ORFs), EBV,
and malaria antigens. IgG and IgM antibodies mean fluorescence intensities (MFI) were
obtained from BioPlex 200 Multianalyte Analyzer (Bio-Rad Laboratories, Hercules, CA,
USA). Each plate included two positive and negative controls, and the percent relative stan-
dard deviation was used to determine inter/intra assay variability. KSHV seropositivity
cutoffs were determined based on the receiver operating characteristic (ROC) curve [8] and
an analysis of IgG antibody levels in two high and low KSHV exposure risk populations
was conducted as described [8]. For A-KSM, KSHV seropositivity was based on day 0 IgG
antibody profiles.

4.3. Parasite Density and Viral Load Quantification

To determine malaria parasite density and viral load, DNA was extracted from dry
blood spots (DBS, with 50µl blood equivalent) using Qiagen QiaAMP DNA extraction
kits (Qiagen, Hilden, Germany) in accordance with the manufacturer’s instructions. DNA
was suspended in the elution buffer, followed by P. falciparum malaria quantification by
real-time PCR (qPCR) amplification of the lactate dehydrogenase (pfldh) gene [43]. Droplet
digital PCR (ddPCR) amplification of ORF26 and BALF5 genes was used to quantify KSHV
and EBV loads, respectively, relative to the human β-actin gene. Previously published
ORF26 [8], human β-actin, and BALF5 [44] primers and PCR conditions were used, and the
KSHV and EBV load was expressed as viral copies/µg human DNA (hDNA).

4.4. Statistical Analysis

All statistical analyses and data visualization were performed using R (version 3.6.3)
and GraphPad Prism (v9.0.0). KSHV seropositivity cutoff was estimated using ROC anal-
ysis as previously described using MFI values from 11 African and 15 North American
control samples [8]. Wilcoxon rank-sum test with Benjamini–Hochberg (BH) correction and
Wilcoxon matched-pairs signed rank tests were used for comparison of KSHV, EBV and
malaria antibody levels. Rank-based Spearman correlation was used to estimate the rela-
tionship between different variables as implemented in the ggscatter R package. Principal
component analysis (PCA) was implemented in R package prcomp with a scaled option.

Supplementary Materials: The following supporting information can be downloaded at: https:

//www.mdpi.com/article/10.3390/ijms24076711/s1.
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