54 research outputs found

    Developing and testing a Corona VaccinE tRiAL pLatform (COVERALL) to study Covid-19 vaccine response in immunocompromised patients

    Full text link
    BACKGROUND The rapid course of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic calls for fast implementation of clinical trials to assess the effects of new treatment and prophylactic interventions. Building trial platforms embedded in existing data infrastructures is an ideal way to address such questions within well-defined subpopulations. METHODS We developed a trial platform building on the infrastructure of two established national cohort studies: the Swiss human immunodeficiency virus (HIV) Cohort Study (SHCS) and Swiss Transplant Cohort Study (STCS). In a pilot trial, termed Corona VaccinE tRiAL pLatform (COVERALL), we assessed the vaccine efficacy of the first two licensed SARS-CoV-2 vaccines in Switzerland and the functionality of the trial platform. RESULTS Using Research Electronic Data Capture (REDCap), we developed a trial platform integrating the infrastructure of the SHCS and STCS. An algorithm identifying eligible patients, as well as baseline data transfer ensured a fast inclusion procedure for eligible patients. We implemented convenient re-directions between the different data entry systems to ensure intuitive data entry for the participating study personnel. The trial platform, including a randomization algorithm ensuring balance among different subgroups, was continuously adapted to changing guidelines concerning vaccination policies. We were able to randomize and vaccinate the first trial participant the same day we received ethics approval. Time to enroll and randomize our target sample size of 380 patients was 22 days. CONCLUSION Taking the best of each system, we were able to flag eligible patients, transfer patient information automatically, randomize and enroll the patients in an easy workflow, decreasing the administrative burden usually associated with a trial of this size

    A genetically encoded reporter of synaptic activity in vivo

    Get PDF
    To image synaptic activity within neural circuits, we tethered the genetically encoded calcium indicator (GECI) GCaMP2 to synaptic vesicles by fusion to synaptophysin. The resulting reporter, SyGCaMP2, detected the electrical activity of neurons with two advantages over existing cytoplasmic GECIs: it identified the locations of synapses and had a linear response over a wider range of spike frequencies. Simulations and experimental measurements indicated that linearity arises because SyGCaMP2 samples the brief calcium transient passing through the presynaptic compartment close to voltage-sensitive calcium channels rather than changes in bulk calcium concentration. In vivo imaging in zebrafish demonstrated that SyGCaMP2 can assess electrical activity in conventional synapses of spiking neurons in the optic tectum and graded voltage signals transmitted by ribbon synapses of retinal bipolar cells. Localizing a GECI to synaptic terminals provides a strategy for monitoring activity across large groups of neurons at the level of individual synapses

    Uncoupling of neurogenesis and differentiation during retinal development

    Get PDF
    Conventionally, neuronal development is regarded to follow a stereotypic sequence of neurogenesis, migration, and differentiation. We demonstrate that this notion is not a general principle of neuronal development by documenting the timing of mitosis in relation to multiple differentiation events for bipolar cells (BCs) in the zebrafish retina using in vivo imaging. We found that BC progenitors undergo terminal neurogenic divisions while in markedly disparate stages of neuronal differentiation. Remarkably, the differentiation state of individual BC progenitors at mitosis is not arbitrary but matches the differentiation state of post-mitotic BCs in their surround. By experimentally shifting the relative timing of progenitor division and differentiation, we provide evidence that neurogenesis and differentiation can occur independently of each other. We propose that the uncoupling of neurogenesis and differentiation could provide neurogenic programs with flexibility, while allowing for synchronous neuronal development within a continuously expanding cell pool

    Synaptic convergence patterns onto retinal ganglion cells are preserved despite topographic variation in pre- and postsynaptic territories

    Get PDF
    Sensory processing can be tuned by a neuron’s integration area, the types of inputs, and the proportion and number of connections with those inputs. Integration areas often vary topographically to sample space differentially across regions. Here, we highlight two visual circuits in which topographic changes in the postsynaptic retinal ganglion cell (RGC) dendritic territories and their presynaptic bipolar cell (BC) axonal territories are either matched or unmatched. Despite this difference, in both circuits, the proportion of inputs from each BC type, i.e., synaptic convergence between specific BCs and RGCs, remained constant across varying dendritic territory sizes. Furthermore, synapse density between BCs and RGCs was invariant across topography. Our results demonstrate a wiring design, likely engaging homotypic axonal tiling of BCs, that ensures consistency in synaptic convergence between specific BC types onto their target RGCs while enabling independent regulation of pre- and postsynaptic territory sizes and synapse number between cell pairs

    Towards a comparison of spaceborne and ground-based spectrodirectional reflectance data

    Full text link
    Almost all natural surfaces exhibit an individual anisotropic reflectance behaviour due to the contrast between the optical properties of surface elements and background and the geometric surface properties of the observed scene. The resulting bidirectional effects are present in all reflectance data and thus occur as well in various vegetation indices (VI’s) retrieved from multiangular data. No matter whether these effects are considered as noise or as a source of additional information, accurate knowledge about their magnitude is important. This preliminary study is based on data of the spaceborne ESA-mission CHRIS (Compact High Resolution Imaging Spectrometer) onboard PROBA-1 and on ground-based spectrodirectional measurements performed with the dual view field goniometer system FIGOS. The objectives of this study are focused on directional effects in CHRIS and FIGOS reflectance data of a Triticale field as well as on the variability of retrieved vegetation indices for selected view angles in both multiangular datasets

    A Synaptic Mechanism for Temporal Filtering of Visual Signals

    Get PDF
    The visual system transmits information about fast and slow changes in light intensity through separate neural pathways. We used in vivo imaging to investigate how bipolar cells transmit these signals to the inner retina. We found that the volume of the synaptic terminal is an intrinsic property that contributes to different temporal filters. Individual cells transmit through multiple terminals varying in size, but smaller terminals generate faster and larger calcium transients to trigger vesicle release with higher initial gain, followed by more profound adaptation. Smaller terminals transmitted higher stimulus frequencies more effectively. Modeling global calcium dynamics triggering vesicle release indicated that variations in the volume of presynaptic compartments contribute directly to all these differences in response dynamics. These results indicate how one neuron can transmit different temporal components in the visual signal through synaptic terminals of varying geometries with different adaptational properties

    ISL1 is a major susceptibility gene for classic bladder exstrophy and a regulator of urinary tract development.

    Get PDF
    Previously genome-wide association methods in patients with classic bladder exstrophy (CBE) found association with ISL1, a master control gene expressed in pericloacal mesenchyme. This study sought to further explore the genetics in a larger set of patients following-up on the most promising genomic regions previously reported. Genotypes of 12 markers obtained from 268 CBE patients of Australian, British, German Italian, Spanish and Swedish origin and 1,354 ethnically matched controls and from 92 CBE case-parent trios from North America were analysed. Only marker rs6874700 at the ISL1 locus showed association (p = 2.22 × 10-08). A meta-analysis of rs6874700 of our previous and present study showed a p value of 9.2 × 10-19. Developmental biology models were used to clarify the location of ISL1 activity in the forming urinary tract. Genetic lineage analysis of Isl1-expressing cells by the lineage tracer mouse model showed Isl1-expressing cells in the urinary tract of mouse embryos at E10.5 and distributed in the bladder at E15.5. Expression of isl1 in zebrafish larvae staged 48 hpf was detected in a small region of the developing pronephros. Our study supports ISL1 as a major susceptibility gene for CBE and as a regulator of urinary tract development
    • …
    corecore