26 research outputs found

    Alcoholic liver disease: Pathogenesis, management, and novel targets for therapy

    Get PDF
    Alcohol use is a leading cause of preventable morbidity and mortality worldwide, with much of its negative impact as the result of alcoholic liver disease (ALD). ALD is a broad term that encompasses a spectrum of phenotypes ranging from simple steatosis to steatohepatitis, progressive fibrosis, cirrhosis, and hepatocellular carcinoma. The mechanisms underlying the development of these different disease stages are incompletely understood. Standard treatment of ALD, which includes abstinence, nutritional support, and corticosteroids, has not changed in the last 40 years despite continued poor outcomes. Novel therapies are therefore urgently needed. The development of such therapies has been hindered by inadequate resources for research and unsuitable animal models. However, recent developments in translational research have allowed for identification of new potential targets for therapy. These targets include: (i) CXC chemokines, (ii) IL-22/STAT3, (iii) TNF receptor superfamily, (iv) osteopontin, (v) gut microbiota and lipopolysaccharide (LPS), (vi) endocannabinoids, and (vii) inflammasomes. We review the natural history, risk factors, pathogenesis, and current treatments for ALD. We further discuss the findings of recent translational studies and potential therapeutic targets

    Optimized and enhanced grid architecture for electric vehicles in Europe

    Get PDF
    For an optimized large-scale roll-out of EVs in Europe whilst at the same time maximizing the potential of DER integration, an optimized and enhanced grid architecture for EVs in Europe has to be considered. The work in this paper is addressing this topic and summarizing the corresponding project findings. The aim of this approach is to provide a framework for the further investigation of selected use cases which allows implementing and comparing scenarios of different DSOs. Following a Smart Grid approach, the developed grid architecture implements energy grid entities and ICT components. The general framework was described including all its relevant clusters and indicating related entities. The network types used for this architecture are following the SGAM and Smart Grid Standards Map approach. A so-called “Smart Grid Connection Point”, which is a generic system interface, is used in this work to allow a more simplified graphical architecture model and increase its readability. Similar to the concept and purpose of the Smart Grid Connection Point, also the principle of an integration bus for entity clusters was introduced. From the Integration bus, the information from/to external systems passes through the Smart Grid Connection Point using one of a range of possible technological options. The position of EVs charging infrastructure within the framework is defined at the border between the domains DERs (generation) and consumption, which takes into account future V2G scenarios, where EVs may act as consumption and generation devices. EVSEs and DERs may be connected as standalone systems directly to the grid, or indirectly as part of one of the clusters at the customer premises domain which refers to the three location-wise types of charging, public, semi-public and private charging. Regarding controlled charging of EVs this optimized architecture allows a variety of different local, distributed or aggregated options which may involve different types of actors.European Commission's FP

    Deletion of SIRT1 From Hepatocytes in Mice Disrupts Lipin-1 Signaling and Aggravates Alcoholic Fatty Liver

    Get PDF
    Sirtuin (SIRT1) is a NAD+-dependent protein deacetylase that regulates hepatic lipid metabolism by modifying histones and transcription factors. Ethanol exposure disrupts SIRT1 activity and contributes to alcoholic liver disease (ALD) in rodents, but the exact pathogenic mechanism is not clear. We compared mice with liver-specific deletion of Sirt1 (Sirt1LKO) mice with their LOX littermates (controls)

    Hepatic lipocalin 2 promotes liver fibrosis and portal hypertension

    Get PDF
    Advanced fibrosis and portal hypertension influence short-term mortality. Lipocalin 2 (LCN2) regulates infection response and increases in liver injury. We explored the role of intrahepatic LCN2 in human alcoholic hepatitis (AH) with advanced fibrosis and portal hypertension and in experimental mouse fibrosis. We found hepatic LCN2 expression and serum LCN2 level markedly increased and correlated with disease severity and portal hypertension in patients with AH. In control human livers, LCN2 expressed exclusively in mononuclear cells, while its expression was markedly induced in AH livers, not only in mononuclear cells but also notably in hepatocytes. Lcn2−/− mice were protected from liver fibrosis caused by either ethanol or CCl4 exposure. Microarray analysis revealed downregulation of matrisome, cell cycle and immune related gene sets in Lcn2−/− mice exposed to CCl4, along with decrease in Timp1 and Edn1 expression. Hepatic expression of COL1A1, TIMP1 and key EDN1 system components were elevated in AH patients and correlated with hepatic LCN2 expression. In vitro, recombinant LCN2 induced COL1A1 expression. Overexpression of LCN2 increased HIF1A that in turn mediated EDN1 upregulation. LCN2 contributes to liver fibrosis and portal hypertension in AH and could represent a new therapeutic target

    Kinase analysis in alcoholic hepatitis identifies p90RSK as a potential mediator of liver fibrogenesis

    Get PDF
    Alcoholic hepatitis (AH) is often associated with advanced fibrosis, which negatively impacts survival. We aimed at identifying kinases deregulated in livers from patients with AH and advanced fibrosis in order to discover novel molecular targets

    Hepatic lipocalin 2 promotes liver fibrosis and portal hypertension

    Get PDF
    Advanced fibrosis and portal hypertension influence short-term mortality. Lipocalin 2 (LCN2) regulates infection response and increases in liver injury. We explored the role of intrahepatic LCN2 in human alcoholic hepatitis (AH) with advanced fibrosis and portal hypertension and in experimental mouse fibrosis. We found hepatic LCN2 expression and serum LCN2 level markedly increased and correlated with disease severity and portal hypertension in patients with AH. In control human livers, LCN2 expressed exclusively in mononuclear cells, while its expression was markedly induced in AH livers, not only in mononuclear cells but also notably in hepatocytes. Lcn2-/- mice were protected from liver fibrosis caused by either ethanol or CCl4 exposure. Microarray analysis revealed downregulation of matrisome, cell cycle and immune related gene sets in Lcn2-/- mice exposed to CCl4, along with decrease in Timp1 and Edn1 expression. Hepatic expression of COL1A1, TIMP1 and key EDN1 system components were elevated in AH patients and correlated with hepatic LCN2 expression. In vitro, recombinant LCN2 induced COL1A1 expression. Overexpression of LCN2 increased HIF1A that in turn mediated EDN1 upregulation. LCN2 contributes to liver fibrosis and portal hypertension in AH and could represent a new therapeutic target

    Kinase analysis in alcoholic hepatitis identifies p90RSK as a potential mediator of liver fibrogenesis

    Get PDF
    Objective Alcoholic hepatitis (AH) is often associated with advanced fibrosis, which negatively impacts survival. We aimed at identifying kinases deregulated in livers from patients with AH and advanced fibrosis in order to discover novel molecular targets. Design Extensive phosphoprotein analysis by reverse phase protein microarrays was performed in AH (n=12) and normal human livers (n=7). Ribosomal S6 kinase (p90RSK) hepatic expression was assessed by qPCR, Western blot and immunohistochemistry. Kaempferol was used as a selective pharmacological inhibitor of the p90RSK pathway to assess the regulation of experimentally-induced liver fibrosis and injury, using in vivo and in vitro approaches. Results Proteomic analysis identified p90RSK as one of the most deregulated kinases in AH. Hepatic p90RSK gene and protein expression was also upregulated in livers with chronic liver disease. Immunohistochemistry studies showed increased p90RSK staining in areas of active fibrogenesis in cirrhotic livers. Therapeutic administration of kaempferol to carbon tetrachloride-treated mice resulted in decreased hepatic collagen deposition, and expression of profibrogenic and proinflammatory genes, compared to vehicle administration. In addition, kaempferol reduced the extent of hepatocellular injury and degree of apoptosis. In primary hepatic stellate cells, kaempferol and small interfering RNA decreased activation of p90RSK, which in turn regulated key profibrogenic actions. In primary hepatocytes, kaempferol attenuated proapoptotic signalling. Conclusions p90RSK is upregulated in patients with chronic liver disease and mediates liver fibrogenesis in vivo and in vitro. These results suggest that the p90RSK pathway could be a new therapeutic approach for liver diseases characterised by advanced fibrosis

    LPS-TLR4 Pathway mediates ductular cell expansion in alcoholic hepatitis.

    Get PDF
    Alcoholic hepatitis (AH) is the most severe form of alcoholic liver disease for which there are no effective therapies. Patients with AH show impaired hepatocyte proliferation, expansion of inefficient ductular cells and high lipopolysaccharide (LPS) levels. It is unknown whether LPS mediates ductular cell expansion. We performed transcriptome studies and identified keratin 23 (KRT23) as a new ductular cell marker. KRT23 expression correlated with mortality and LPS serum levels. LPS-TLR4 pathway role in ductular cell expansion was assessed in human and mouse progenitor cells, liver slices and liver injured TLR4 KO mice. In AH patients, ductular cell expansion correlated with portal hypertension and collagen expression. Functional studies in ductular cells showed that KRT23 regulates collagen expression. These results support a role for LPS-TLR4 pathway in promoting ductular reaction in AH. Maneuvers aimed at decreasing LPS serum levels in AH patients could have beneficial effects by preventing ductular reaction development

    Fat-Specific Protein 27/CIDEC Promotes Development of Alcoholic Steatohepatitis in Mice and Humans

    Get PDF
    Alcoholic steatohepatitis (ASH) is the progressive form of alcoholic liver disease and may lead to cirrhosis and hepatocellular carcinoma. We studied mouse models and human tissues to identify molecules associated with ASH progression, and focused on mouse fat-specific protein 27 (FSP-27)/human cell death-inducing DFF45-like effector C (CIDEC) protein, which is expressed in white adipose tissues and promotes formation of fat droplets

    Defective HNF4alpha-dependent gene expression as a driver of hepatocellular failure in alcoholic hepatitis

    Get PDF
    Alcoholic hepatitis (AH) is a life-threatening condition characterized by profound hepatocellular dysfunction for which targeted treatments are urgently needed. Identification of molecular drivers is hampered by the lack of suitable animal models. By performing RNA sequencing in livers from patients with different phenotypes of alcohol-related liver disease (ALD), we show that development of AH is characterized by defective activity of liver-enriched transcription factors (LETFs). TGFÎČ1 is a key upstream transcriptome regulator in AH and induces the use of HNF4α P2 promoter in hepatocytes, which results in defective metabolic and synthetic functions. Gene polymorphisms in LETFs including HNF4α are not associated with the development of AH. In contrast, epigenetic studies show that AH livers have profound changes in DNA methylation state and chromatin remodeling, affecting HNF4α-dependent gene expression. We conclude that targeting TGFÎČ1 and epigenetic drivers that modulate HNF4α-dependent gene expression could be beneficial to improve hepatocellular function in patients with AH
    corecore